IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.04993.html
   My bibliography  Save this paper

Optimal Policy Learning: From Theory to Practice

Author

Listed:
  • Giovanni Cerulli

Abstract

Following in the footsteps of the literature on empirical welfare maximization, this paper wants to contribute by stressing the policymaker perspective via a practical illustration of an optimal policy assignment problem. More specifically, by focusing on the class of threshold-based policies, we first set up the theoretical underpinnings of the policymaker selection problem, to then offer a practical solution to this problem via an empirical illustration using the popular LaLonde (1986) training program dataset. The paper proposes an implementation protocol for the optimal solution that is straightforward to apply and easy to program with standard statistical software.

Suggested Citation

  • Giovanni Cerulli, 2020. "Optimal Policy Learning: From Theory to Practice," Papers 2011.04993, arXiv.org.
  • Handle: RePEc:arx:papers:2011.04993
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.04993
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    2. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    3. Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
    4. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    5. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    6. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    7. Giovanni Cerulli, 2022. "Econometric Evaluation of Socio-Economic Programs," Advanced Studies in Theoretical and Applied Econometrics, Springer, edition 2, number 978-3-662-65945-8.
    8. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    9. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    10. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    2. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    3. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.
    4. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    6. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    7. Daniel F. Pellatt, 2022. "PAC-Bayesian Treatment Allocation Under Budget Constraints," Papers 2212.09007, arXiv.org, revised Jun 2023.
    8. Kohei Yata, 2021. "Optimal Decision Rules Under Partial Identification," Papers 2111.04926, arXiv.org, revised Aug 2023.
    9. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    10. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    11. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
    12. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    13. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    14. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
    15. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
    16. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    17. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    18. Juliano Assunção & Robert McMillan & Joshua Murphy & Eduardo Souza-Rodrigues, 2019. "Optimal Environmental Targeting in the Amazon Rainforest," NBER Working Papers 25636, National Bureau of Economic Research, Inc.
    19. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    20. Liyang Sun, 2021. "Empirical Welfare Maximization with Constraints," Papers 2103.15298, arXiv.org, revised Sep 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.04993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.