IDEAS home Printed from https://ideas.repec.org/p/hhs/umnees/0674.html
   My bibliography  Save this paper

A Vector Integer-Valued Moving Average Modelfor High Frequency Financial Count Data

Author

Listed:
  • Quoreshi, Shahiduzzaman

    (Department of Economics, Umeå University)

Abstract

A vector integer-valued moving average (VINMA) model is introduced. The VINMA model allows for both positive and negative correlations between the counts. The conditional and unconditional first and second order moments are obtained. The CLS and FGLS estimators are discussed. The model is capable of capturing the covariance between and within intra-day time series of transaction frequency data due to macroeconomic news and news related to a specific stock. Empirically, it is found that the spillover effect from Ericsson B to AstraZeneca is larger than that from AstraZeneca to Ericsson B

Suggested Citation

  • Quoreshi, Shahiduzzaman, 2006. "A Vector Integer-Valued Moving Average Modelfor High Frequency Financial Count Data," Umeå Economic Studies 674, Umeå University, Department of Economics.
  • Handle: RePEc:hhs:umnees:0674
    as

    Download full text from publisher

    File URL: http://www.econ.umu.se/DownloadAsset.action?contentId=52344&languageId=3&assetKey=ues674
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kurt Brannas & A. M. M. Shahiduzzaman Quoreshi, 2010. "Integer-valued moving average modelling of the number of transactions in stocks," Applied Financial Economics, Taylor & Francis Journals, vol. 20(18), pages 1429-1440.
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Quoreshi, Shahiduzzaman, 2006. "LongMemory, Count Data, Time Series Modelling for Financial Application," Umeå Economic Studies 673, Umeå University, Department of Economics.
    6. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    7. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    8. Quoreshi, Shahiduzzaman, 2005. "Bivariate Time Series Modelling of Financial Count Data," Umeå Economic Studies 655, Umeå University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rainer Baule & Bart Frijns & Sebastian Schlie, 2024. "Feedback Trading: The Intraday Case of Retail Derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(9), pages 1487-1507, September.
    2. Gagliardini, Patrick & Gouriéroux, Christian, 2019. "Identification by Laplace transforms in nonlinear time series and panel models with unobserved stochastic dynamic effects," Journal of Econometrics, Elsevier, vol. 208(2), pages 613-637.
    3. Cláudia Santos & Isabel Pereira & Manuel G. Scotto, 2021. "On the theory of periodic multivariate INAR processes," Statistical Papers, Springer, vol. 62(3), pages 1291-1348, June.
    4. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
    5. Miroslav M. Ristić & Yuvraj Sunecher & Naushad Mamode Khan & Vandna Jowaheer, 2019. "A GQL-based inference in non-stationary BINMA(1) time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 969-998, September.
    6. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
    7. Khan Naushad Mamode & Sunecher Yuvraj & Jowaheer Vandna, 2017. "Analyzing the Full BINMA Time Series Process Using a Robust GQL Approach," Journal of Time Series Econometrics, De Gruyter, vol. 9(2), pages 1-12, July.
    8. Sunecher Yuvraj & Mamode Khan Naushad & Jowaheer Vandna, 2019. "Modelling with Dispersed Bivariate Moving Average Processes," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.M.M. Shahiduzzaman Quoreshi, 2017. "A bivariate integer-valued long-memory model for high-frequency financial count data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(3), pages 1080-1089, February.
    2. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
    3. repec:wyi:journl:002120 is not listed on IDEAS
    4. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    5. Karaa, Rabaa & Slim, Skander & Hmaied, Dorra Mezzez, 2018. "Trading intensity and the volume-volatility relationship on the Tunis Stock Exchange," Research in International Business and Finance, Elsevier, vol. 44(C), pages 88-99.
    6. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    7. Alfonso Dufour & Robert F Engle, 2000. "The ACD Model: Predictability of the Time Between Concecutive Trades," ICMA Centre Discussion Papers in Finance icma-dp2000-05, Henley Business School, University of Reading.
    8. Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, Center for Economic and Financial Research (CEFIR).
    9. DOLADO , Juan J. & RODRIGUEZ-POO, Juan & VEREDAS, David, 2004. "Testing weak exogeneity in the exponential family : an application to financial point processes," LIDAM Discussion Papers CORE 2004049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Magdalena Osinska & Andrzej Dobrzynski & Yochanan Shachmurove, 2016. "Performance Of American And Russian Joint Stock Companies On Financial Market. A Microstructure Perspective," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(4), pages 819-851, December.
    11. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    12. Karanasos, Menelaos & Xu, Yongdeng & Yfanti, Stavroula, 2017. "Constrained QML Estimation for Multivariate Asymmetric MEM with Spillovers: The Practicality of Matrix Inequalities," Cardiff Economics Working Papers E2017/14, Cardiff University, Cardiff Business School, Economics Section.
    13. repec:kap:iaecre:v:14:y:2008:i:1:p:112-124 is not listed on IDEAS
    14. Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
    15. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    16. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    17. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    18. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. David Easley & Robert F. Engle & Maureen O'Hara & Liuren Wu, 2008. "Time-Varying Arrival Rates of Informed and Uninformed Trades," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 171-207, Spring.
    20. Ping-Hung Chou & Pei-Shan Wu & Teng-Tsai Tu, 2014. "The Impact of Trader Behavior on Options Price Volatility," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(4), pages 503-516, April.
    21. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    22. Yang, Joey Wenling, 2011. "Transaction duration and asymmetric price impact of trades--Evidence from Australia," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 91-102, January.
    23. Simonsen, Ola, 2006. "The Impact of News Releases on Trade Durations in Stocks -Empirical Evidence from Sweden," Umeå Economic Studies 688, Umeå University, Department of Economics.

    More about this item

    Keywords

    Count data; Intra-day; Time series; Estimation; Reaction;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:umnees:0674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Skog (email available below). General contact details of provider: https://edirc.repec.org/data/inumuse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.