IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i3d10.1007_s00362-019-01136-5.html
   My bibliography  Save this article

On the theory of periodic multivariate INAR processes

Author

Listed:
  • Cláudia Santos

    (University of Aveiro
    Polytechnic Institute of Coimbra)

  • Isabel Pereira

    (University of Aveiro)

  • Manuel G. Scotto

    (IST University of Lisbon)

Abstract

In this paper a multivariate integer-valued autoregressive model of order one with periodic time-varying parameters, and driven by a periodic innovations sequence of independent random vectors is introduced and studied in detail. Emphasis is placed on models with periodic multivariate negative binomial innovations. Basic probabilistic and statistical properties of the novel model are discussed. Aiming to reduce computational burden arising from the use of the conditional maximum likelihood method, a composite likelihood-based approach is adopted. The performance of such method is compared with that of some traditional competitors, namely moment estimators and conditional maximum likelihood estimators. Forecasting is also addressed. Furthermore, an application to a real data set concerning the monthly number of fires in three counties in Portugal is presented.

Suggested Citation

  • Cláudia Santos & Isabel Pereira & Manuel G. Scotto, 2021. "On the theory of periodic multivariate INAR processes," Statistical Papers, Springer, vol. 62(3), pages 1291-1348, June.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:3:d:10.1007_s00362-019-01136-5
    DOI: 10.1007/s00362-019-01136-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-019-01136-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-019-01136-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hee-Young Kim & Yousung Park, 2008. "A non-stationary integer-valued autoregressive model," Statistical Papers, Springer, vol. 49(3), pages 485-502, July.
    2. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    3. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    4. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    5. Yuvraj Sunecher & Naushad Mamode Khan & Miroslav M. Ristić & Vandna Jowaheer, 2019. "BINAR(1) negative binomial model for bivariate non-stationary time series with different over-dispersion indices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 625-653, December.
    6. N. Mamode Khan & Y. Sunecher & V. Jowaheer & M. M. Ristic & M. Heenaye-Mamode Khan, 2019. "Investigating GQL-based inferential approaches for non-stationary BINAR(1) model under different quantum of over-dispersion with application," Computational Statistics, Springer, vol. 34(3), pages 1275-1313, September.
    7. Miroslav M. Ristić & Yuvraj Sunecher & Naushad Mamode Khan & Vandna Jowaheer, 2019. "A GQL-based inference in non-stationary BINMA(1) time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 969-998, September.
    8. Tobias A. Möller & Maria Eduarda Silva & Christian H. Weiß & Manuel G. Scotto & Isabel Pereira, 2016. "Self-exciting threshold binomial autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 369-400, October.
    9. Quoreshi, A.M.M. Shahiduzzaman, 2008. "A vector integer-valued moving average model for high frequency financial count data," Economics Letters, Elsevier, vol. 101(3), pages 258-261, December.
    10. Ruey S. Tsay, 1992. "Model Checking Via Parametric Bootstraps in Time Series Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 1-15, March.
    11. Marj Tonini & Mário Gonzalez Pereira & Joana Parente & Carmen Vega Orozco, 2017. "Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1489-1510, February.
    12. Jan Bulla & Christophe Chesneau & Maher Kachour, 2017. "A bivariate first-order signed integer-valued autoregressive process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6590-6604, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiajie Kong & Robert Lund, 2023. "Seasonal count time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 93-124, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    2. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    3. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.
    4. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    5. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    6. Meisam Moghimbeygi & Mousa Golalizadeh, 2019. "A longitudinal model for shapes through triangulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 99-121, March.
    7. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    8. Nobel, Anne & Lizin, Sebastien & Malina, Robert, 2023. "What drives the designation of protected areas? Accounting for spatial dependence using a composite marginal likelihood approach," Ecological Economics, Elsevier, vol. 205(C).
    9. Paola Bortot & Carlo Gaetan, 2014. "A Latent Process Model for Temporal Extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 606-621, September.
    10. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    11. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers 12003, Concordia University, Department of Economics.
    12. Larribe Fabrice & Lessard Sabin, 2008. "A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-33, August.
    13. Gourieroux, C. & Monfort, A., 2018. "Composite indirect inference with application to corporate risks," Econometrics and Statistics, Elsevier, vol. 7(C), pages 30-45.
    14. Moreno Bevilacqua & Christian Caamaño-Carrillo & Reinaldo B. Arellano-Valle & Camilo Gómez, 2022. "A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 644-674, September.
    15. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    16. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    17. Hirk, Rainer & Vana, Laura & Hornik, Kurt, 2022. "A corporate credit rating model with autoregressive errors," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 224-240.
    18. Qiurong Cui & Zhengjun Zhang, 2018. "Max-Linear Competing Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 62-74, January.
    19. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2020. "Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 479-522, June.
    20. Bhat, Chandra R. & Astroza, Sebastian & Hamdi, Amin S., 2017. "A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 126-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:3:d:10.1007_s00362-019-01136-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.