Analyzing the Full BINMA Time Series Process Using a Robust GQL Approach
Author
Abstract
Suggested Citation
DOI: 10.1515/jtse-2015-0019
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kurt Brannas & A. M. M. Shahiduzzaman Quoreshi, 2010.
"Integer-valued moving average modelling of the number of transactions in stocks,"
Applied Financial Economics, Taylor & Francis Journals, vol. 20(18), pages 1429-1440.
- Brännäs, Kurt & Quoreshi, Shahiduzzaman, 2004. "Integer-Valued Moving Average Modelling of the Number of Transactions in Stocks," Umeå Economic Studies 637, Umeå University, Department of Economics.
- J. Durbin & S. J. Koopman, 2000.
"Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
- Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Other publications TiSEM 6338af09-6f2c-46d0-985b-d, Tilburg University, School of Economics and Management.
- Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Discussion Paper 1998-142, Tilburg University, Center for Economic Research.
- Robert C. Jung & A. R. Tremayne, 2003. "Testing for serial dependence in time series models of counts," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 65-84, January.
- Quoreshi, A.M.M. Shahiduzzaman, 2008.
"A vector integer-valued moving average model for high frequency financial count data,"
Economics Letters, Elsevier, vol. 101(3), pages 258-261, December.
- Quoreshi, Shahiduzzaman, 2006. "A Vector Integer-Valued Moving Average Modelfor High Frequency Financial Count Data," Umeå Economic Studies 674, Umeå University, Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
- McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
- B.P.M. McCabe & G.M. Martin, 2003. "Coherent Predictions of Low Count Time Series," Monash Econometrics and Business Statistics Working Papers 8/03, Monash University, Department of Econometrics and Business Statistics.
- Maravall, A. & del Rio, A., 2007.
"Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
- Agustín Maravall & Ana del Río, 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Working Papers 0728, Banco de España.
- Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008.
"Parameterisation and efficient MCMC estimation of non-Gaussian state space models,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
- Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
- Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
- Boris Aleksandrov & Christian H. Weiß, 2020. "Parameter estimation and diagnostic tests for INMA(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 196-232, March.
- Mesters, G. & Koopman, S.J., 2014.
"Generalized dynamic panel data models with random effects for cross-section and time,"
Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
- Geert Mesters & Siem Jan Koopman, 2012. "Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time," Tinbergen Institute Discussion Papers 12-009/4, Tinbergen Institute, revised 18 Mar 2014.
- Hajar Hajmohammadi & Hamid Salehi, 2024. "The Impacts of COVID-19 Lockdowns on Road Transport Air Pollution in London: A State-Space Modelling Approach," IJERPH, MDPI, vol. 21(9), pages 1-12, August.
- Na Jin & Sergio Lence & Chad Hart & Dermot Hayes, 2012.
"The Long-Term Structure of Commodity Futures,"
American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 718-735.
- Jin, Na & Lence, Sergio H & Hart, Chad & Hayes, Dermot J., 2012. "The Long-Term Structure of Commodity Futures," ISU General Staff Papers 201201010800001071, Iowa State University, Department of Economics.
- Jin, Na & Lence, Sergio H. & Hart, Chad E. & Hayes, Dermot J., 2012. "The Long-Term Structure of Commodity Futures," Staff General Research Papers Archive 34992, Iowa State University, Department of Economics.
- Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
- Tommaso Proietti & Alessandra Luati, 2013.
"Maximum likelihood estimation of time series models: the Kalman filter and beyond,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362,
Edward Elgar Publishing.
- Luati, Alessandra & Proietti, Tommaso, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Working Papers 2012_02, University of Sydney Business School, Discipline of Business Analytics.
- Tommaso, Proietti & Alessandra, Luati, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," MPRA Paper 39600, University Library of Munich, Germany.
- repec:jss:jstsof:16:i01 is not listed on IDEAS
- Robert Jung & Gerd Ronning & A. Tremayne, 2005. "Estimation in conditional first order autoregression with discrete support," Statistical Papers, Springer, vol. 46(2), pages 195-224, April.
- Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
- Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
- Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
- Quoreshi, Shahiduzzaman, 2006. "LongMemory, Count Data, Time Series Modelling for Financial Application," Umeå Economic Studies 673, Umeå University, Department of Economics.
- Alexander Kreuzer & Luciana Dalla Valle & Claudia Czado, 2022. "A Bayesian non‐linear state space copula model for air pollution in Beijing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 613-638, June.
- Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
- Robert A. Hill & Paulo M. M. Rodrigues, 2022.
"Forgetting approaches to improve forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1356-1371, November.
- Paulo M.M. Rodrigues & Robert Hill, 2022. "Forgetting Approaches to Improve Forecasting," Working Papers w202208, Banco de Portugal, Economics and Research Department.
More about this item
Keywords
bivariate; time series; moving average;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:9:y:2017:i:2:p:12:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.