IDEAS home Printed from
   My bibliography  Save this paper

Testing over-representation of observations in subsets of a DEA technology


  • Asmild, Mette

    () (ORMS Group)

  • Hougaard, Jens Leth

    (Department of Operations Management)

  • Olesen, Ole B.

    () (Department of Business and Economics)


This paper proposes a test for whether data are over-represented in a given production zone, i.e. a subset of a production possibility set which has been estimated using the non-parametric Data Envelopment Analysis (DEA) approach. A binomial test is used that relates the number of observations inside such a zone to a discrete probability weighted relative volume of that zone. A Monte Carlo simulation illustrates the performance of the proposed test statistic and suggests good estimation of both facet probabilities and the assumed common inefficiency distribution in a three dimensional input space.

Suggested Citation

  • Asmild, Mette & Hougaard, Jens Leth & Olesen, Ole B., 2010. "Testing over-representation of observations in subsets of a DEA technology," Discussion Papers of Business and Economics 2/2010, University of Southern Denmark, Department of Business and Economics.
  • Handle: RePEc:hhs:sdueko:2010_002

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    3. Wheelock, David C & Wilson, Paul W, 1999. "Technical Progress, Inefficiency, and Productivity Change in U.S. Banking, 1984-1993," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 31(2), pages 212-234, May.
    4. J. Hartigan, 1985. "Statistical theory in clustering," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 63-76, December.
    5. Peter Bogetoft & Jens Hougaard, 2003. "Rational Inefficiencies," Journal of Productivity Analysis, Springer, vol. 20(3), pages 243-271, November.
    6. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    7. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    8. Nam Anh Tran & Gerald Shively & Paul Preckel, 2010. "A new method for detecting outliers in Data Envelopment Analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 17(4), pages 313-316.
    9. Ole Olesen & N. Petersen, 2003. "Identification and Use of Efficient Faces and Facets in DEA," Journal of Productivity Analysis, Springer, vol. 20(3), pages 323-360, November.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Data Envelopment Analysis (DEA); Over-representation; Data density; Binomial test; Convex hull;

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sdueko:2010_002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lene Holbæk). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.