IDEAS home Printed from https://ideas.repec.org/p/hhs/gunwpe/0682.html
   My bibliography  Save this paper

Optimal Environmental Road Pricing and Integrated Daily Commuting Patterns

Author

Listed:
  • Coria, Jessica

    (Department of Economics, School of Business, Economics and Law, Göteborg University)

  • Zhang, Xiao-Bing

    (School of Economics, Renmin University of China.)

Abstract

Road pricing can improve air quality by reducing and spreading traffic flows. Nevertheless, air quality does not depend only on traffic flows, but also on pollution dispersion. In this paper we investigate the effects of the temporal variation in pollution dispersion on optimal road pricing, and show that time-varying road pricing is needed to make drivers internalize the social costs of both time-varying congestion and time- varying pollution. To this end, we develop an ecological economics model that takes into account the effects of road pricing on integrated daily commuting patterns. We characterize the optimal road pricing when pollution dispersion varies over the day and analyze its effects on traffic flows, arrival times, and the number of commuters by car.

Suggested Citation

  • Coria, Jessica & Zhang, Xiao-Bing, 2016. "Optimal Environmental Road Pricing and Integrated Daily Commuting Patterns," Working Papers in Economics 682, University of Gothenburg, Department of Economics.
  • Handle: RePEc:hhs:gunwpe:0682
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2077/50822
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Coria, Jessica & Bonilla, Jorge & Grundström, Maria & Pleijel, Håkan, 2015. "Air pollution dynamics and the need for temporally differentiated road pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 178-195.
    2. Bonilla,Jorge A., 2016. "The more stringent, the better ? rationing car use in Bogota with moderate and drastic restrictions," Policy Research Working Paper Series 7846, The World Bank.
    3. Gonzales, Eric J. & Daganzo, Carlos F., 2013. "The evening commute with cars and transit: Duality results and user equilibrium for the combined morning and evening peaks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 286-299.
    4. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    5. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    6. V. F. Hurdle, 1981. "Equilibrium Flows on Urban Freeways," Transportation Science, INFORMS, vol. 15(3), pages 255-293, August.
    7. Zhang, Xiaoning & Huang, Hai-Jun & Zhang, H.M., 2008. "Integrated daily commuting patterns and optimal road tolls and parking fees in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 38-56, January.
    8. Coria, Jessica, 2011. "Environmental crises' regulations, tradable permits and the adoption of new technologies," Resource and Energy Economics, Elsevier, vol. 33(3), pages 455-476, September.
    9. Daniel, Joseph I. & Bekka, Khalid, 2000. "The Environmental Impact of Highway Congestion Pricing," Journal of Urban Economics, Elsevier, vol. 47(2), pages 180-215, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. André de Palma & Shaghayegh Vosough & Robin Lindsey, 2020. "Pricing vehicle emissions and congestion using a dynamic traffic network simulator," THEMA Working Papers 2020-09, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coria, Jessica & Zhang, Xiao-Bing, 2017. "Optimal environmental road pricing and daily commuting patterns," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 297-314.
    2. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    3. Lu, Xiao-Shan & Huang, Hai-Jun & Guo, Ren-Yong & Xiong, Fen, 2021. "Linear location-dependent parking fees and integrated daily commuting patterns with late arrival and early departure in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 293-322.
    4. Coria, Jessica & Bonilla, Jorge & Grundström, Maria & Pleijel, Håkan, 2015. "Air pollution dynamics and the need for temporally differentiated road pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 178-195.
    5. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    6. Palma, André de & Lindsey, Robin & Picard, Nathalie, 2015. "Trip-timing decisions and congestion with household scheduling preferences," Economics of Transportation, Elsevier, vol. 4(1), pages 118-131.
    7. Lu, Xiao-Shan & Guo, Ren-Yong & Huang, Hai-Jun & Xu, Xiaoming & Chen, Jiajia, 2021. "Equilibrium analysis of parking for integrated daily commuting," Research in Transportation Economics, Elsevier, vol. 90(C).
    8. Zhang, Xiang & Liu, Wei & Waller, S. Travis & Yin, Yafeng, 2019. "Modelling and managing the integrated morning-evening commuting and parking patterns under the fully autonomous vehicle environment," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 380-407.
    9. Bao, Yue & Yang, Hai & Gao, Ziyou & Xu, Hongli, 2023. "How do pre-event activities alleviate congestion and increase attendees’ travel utility and the venue's profit during a special event?," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 332-353.
    10. Li, Chuan-Yao & Xu, Guang-Ming & Tang, Tie-Qiao, 2018. "Social optimum for evening commute in a single-entry traffic corridor with no early departures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 236-247.
    11. Ling-Ling Xiao & Tian-Liang Liu & Hai-Jun Huang, 2021. "Tradable permit schemes for managing morning commute with carpool under parking space constraint," Transportation, Springer, vol. 48(4), pages 1563-1586, August.
    12. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    13. Fosgerau, Mogens & Engelson, Leonid, 2011. "The value of travel time variance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 1-8, January.
    14. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    15. Braid, Ralph M., 2018. "Partial peak-load pricing of a transportation bottleneck with homogeneous and heterogeneous values of time," Economics of Transportation, Elsevier, vol. 16(C), pages 29-41.
    16. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27.
    17. Zhang, Xiaoning & Huang, Hai-Jun & Zhang, H.M., 2008. "Integrated daily commuting patterns and optimal road tolls and parking fees in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 38-56, January.
    18. Gonzales, Eric J. & Daganzo, Carlos F., 2013. "The evening commute with cars and transit: Duality results and user equilibrium for the combined morning and evening peaks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 286-299.
    19. Richard Arnott, 1986. "Information and Time-Of-Use Decisions in Stochastically Congestable Facilities," Discussion Papers 788, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    20. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.

    More about this item

    Keywords

    Air pollution; Road transportation; Road pricing; Pollution dispersion;
    All these keywords.

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunwpe:0682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ann-Christin Räätäri Nyström (email available below). General contact details of provider: https://edirc.repec.org/data/naiguse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.