IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03429894.html
   My bibliography  Save this paper

Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies

Author

Listed:
  • Ludovic Dibiaggio

    (CERAMA - Histoire et Critique des Arts - Centre d'étude et de recherche d'archéologie méditerranéenne et atlantique. UHB - MEN : EA1279 - UR2 - Université de Rennes 2)

  • Maryam Nasyar
  • Lionel Nesta

    (OFCE - Observatoire français des conjonctures économiques (Sciences Po) - Sciences Po - Sciences Po)

Abstract

This paper analyses whether complementarity and substitutability of knowledge elements are key determinants of the firm's inventive performance, in addition to the more conventional measures of knowledge stock and diversity. Using patent data from 1968 to 2002 in the semiconductor industry, we find that the overall level of complementarity between knowledge components positively contributes to firms' inventive capability, whereas the overall level of substitutability between knowledge components generally has the opposite effect. Yet a relatively high level of substitutability is found to be beneficial for explorative inventions. These results suggest that a firm's inventive capacity significantly depends on its ability to align its inventive strategies and knowledge base structure.

Suggested Citation

  • Ludovic Dibiaggio & Maryam Nasyar & Lionel Nesta, 2014. "Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies," Post-Print hal-03429894, HAL.
  • Handle: RePEc:hal:journl:hal-03429894
    DOI: 10.1016/j.respol.2014.04.001
    Note: View the original document on HAL open archive server: https://sciencespo.hal.science/hal-03429894
    as

    Download full text from publisher

    File URL: https://sciencespo.hal.science/hal-03429894/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.respol.2014.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bruce Kogut & Udo Zander, 1992. "Knowledge of the Firm, Combinative Capabilities, and the Replication of Technology," Organization Science, INFORMS, vol. 3(3), pages 383-397, August.
    2. Nesta, Lionel, 2008. "Knowledge and productivity in the world's largest manufacturing corporations," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 886-902, September.
    3. Usselman, Steven W., 1992. "From Novelty to Utility: George Westinghouse and the Business of Innovation during the Age of Edison," Business History Review, Cambridge University Press, vol. 66(2), pages 251-304, July.
    4. Winter, Sidney G., 1984. "Schumpeterian competition in alternative technological regimes," Journal of Economic Behavior & Organization, Elsevier, vol. 5(3-4), pages 287-320.
    5. Henderson, Rebecca., 1994. "The evolution of integrative capability : innovation in cardiovascular drug discovery," Working papers 3711-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Zvi Griliches, 1998. "Productivity, R&D, and Basic Research at the Firm Level in the 1970s," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 82-99, National Bureau of Economic Research, Inc.
    7. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    8. Edwin Mansfield & Ruben F. Mettler & David Packard, 1980. "Technology and Productivity in the United States," NBER Chapters, in: The American Economy in Transition, pages 563-616, National Bureau of Economic Research, Inc.
    9. Avenel, E. & Favier, A.V. & Ma, S. & Mangematin, V. & Rieu, C., 2007. "Diversification and hybridization in firm knowledge bases in nanotechnologies," Research Policy, Elsevier, vol. 36(6), pages 864-870, July.
    10. repec:fth:harver:1473 is not listed on IDEAS
    11. Pavitt, Keith, 1998. "Technologies, Products and Organization in the Innovating Firm: What Adam Smith Tells Us and Joseph Schumpeter Doesn't," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 7(3), pages 433-452, September.
    12. Lionel Nesta & Ludovic Dibiaggio, 2003. "Technology Strategy and Knowledge Dynamics: The Case of Biotech¹," Industry and Innovation, Taylor & Francis Journals, vol. 10(3), pages 331-349.
    13. Thomke, Stefan H. & Hippel, Eric von. & Franke, Roland Rolf., 1997. "Modes of experimentation : an innovation process, and competitive, variable," Working papers WP 3972-97., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    14. Megna, Pamela & Klock, Mark, 1993. "The Impact on Intangible Capital on Tobin's q in the Semiconductor Industry," American Economic Review, American Economic Association, vol. 83(2), pages 265-269, May.
    15. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    16. Robert M. Grant, 1996. "Prospering in Dynamically-Competitive Environments: Organizational Capability as Knowledge Integration," Organization Science, INFORMS, vol. 7(4), pages 375-387, August.
    17. Bronwyn H. Hall, 1990. "The Manufacturing Sector Master File: 1959-1987," NBER Working Papers 3366, National Bureau of Economic Research, Inc.
    18. Constance E. Helfat, 1994. "Evolutionary Trajectories in Petroleum Firm R&D," Management Science, INFORMS, vol. 40(12), pages 1720-1747, December.
    19. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    20. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    21. Gautam Ahuja & Riitta Katila, 2001. "Technological acquisitions and the innovation performance of acquiring firms: a longitudinal study," Strategic Management Journal, Wiley Blackwell, vol. 22(3), pages 197-220, March.
    22. David J. Teece, 2003. "Towards an Economic Theory of the Multiproduct Firm," World Scientific Book Chapters, in: Essays In Technology Management And Policy Selected Papers of David J Teece, chapter 15, pages 419-446, World Scientific Publishing Co. Pte. Ltd..
    23. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    24. Link, Albert N, 1981. "Basic Research and Productivity Increase in Manufacturing: Additional Evidence," American Economic Review, American Economic Association, vol. 71(5), pages 1111-1112, December.
    25. Karki, M. M. S., 1997. "Patent citation analysis: A policy analysis tool," World Patent Information, Elsevier, vol. 19(4), pages 269-272, December.
    26. Rebecca Henderson & Iain Cockburn, 1994. "Measuring Competence? Exploring Firm Effects in Pharmaceutical Research," Strategic Management Journal, Wiley Blackwell, vol. 15(S1), pages 63-84, December.
    27. Deng, Yi, 2008. "The value of knowledge spillovers in the U.S. semiconductor industry," International Journal of Industrial Organization, Elsevier, vol. 26(4), pages 1044-1058, July.
    28. Lionel Nesta & Pier Paolo Saviotti, 2005. "Coherence Of The Knowledge Base And The Firm'S Innovative Performance: Evidence From The U.S. Pharmaceutical Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 53(1), pages 123-142, March.
    29. Kauffman, Stuart & Lobo, Jose & Macready, William G., 2000. "Optimal search on a technology landscape," Journal of Economic Behavior & Organization, Elsevier, vol. 43(2), pages 141-166, October.
    30. Nicolaj Siggelkow, 2002. "Misperceiving Interactions Among Complements and Substitutes: Organizational Consequences," Management Science, INFORMS, vol. 48(7), pages 900-916, July.
    31. Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
    32. Olav Sorenson & Jan W. Rivkin & Lee Fleming, 2010. "Complexity, Networks and Knowledge Flows," Chapters, in: Ron Boschma & Ron Martin (ed.), The Handbook of Evolutionary Economic Geography, chapter 15, Edward Elgar Publishing.
    33. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    34. Rebecca Henderson & Iain Cockburn, 1996. "Scale, Scope, and Spillovers: The Determinants of Research Productivity in Drug Discovery," RAND Journal of Economics, The RAND Corporation, vol. 27(1), pages 32-59, Spring.
    35. Marengo, Luigi, et al, 2000. "The Structure of Problem-Solving Knowledge and the Structure of Organizations," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 9(4), pages 757-788, December.
    36. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    37. Gambardella, Alfonso & Torrisi, Salvatore, 1998. "Does technological convergence imply convergence in markets? Evidence from the electronics industry," Research Policy, Elsevier, vol. 27(5), pages 445-463, September.
    38. Zvi Griliches, 1998. "Productivity and R&D at the Firm Level," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 100-133, National Bureau of Economic Research, Inc.
    39. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    40. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1, March.
    41. Scott, John T & Pascoe, George, 1987. "Purposive Diversification of R and D in Manufacturing," Journal of Industrial Economics, Wiley Blackwell, vol. 36(2), pages 193-205, December.
    42. Garcia-Vega, Maria, 2006. "Does technological diversification promote innovation?: An empirical analysis for European firms," Research Policy, Elsevier, vol. 35(2), pages 230-246, March.
    43. Richard R. Nelson, 1991. "Why do firms differ, and how does it matter?," Strategic Management Journal, Wiley Blackwell, vol. 12(S2), pages 61-74, December.
    44. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    45. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    46. Patel, Pari & Pavitt, Keith, 1997. "The technological competencies of the world's largest firms: Complex and path-dependent, but not much variety," Research Policy, Elsevier, vol. 26(2), pages 141-156, May.
    47. Yi Deng, 2005. "The value of knowledge spillovers," Working Paper Series 2005-14, Federal Reserve Bank of San Francisco.
    48. David J. Teece & Richard Rumelt & Giovanni Dosi & Sidney Winter, 2000. "Understanding Corporate Coherence: Theory and Evidence," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 9, pages 264-293, Edward Elgar Publishing.
    49. Lucia Piscitello, 2005. "Corporate Diversification, Coherence and Firm Innovative Performance," Revue d'Économie Industrielle, Programme National Persée, vol. 110(1), pages 127-148.
    50. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67, pages 297-297.
    51. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
    52. Lori Rosenkopf & Atul Nerkar, 2001. "Beyond local search: boundary‐spanning, exploration, and impact in the optical disk industry," Strategic Management Journal, Wiley Blackwell, vol. 22(4), pages 287-306, April.
    53. Levinthal, Daniel A, 1998. "The Slow Pace of Rapid Technological Change: Gradualism and Punctuation in Technological Change," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 7(2), pages 217-247, June.
    54. Dosi, Giovanni, 1988. "Sources, Procedures, and Microeconomic Effects of Innovation," Journal of Economic Literature, American Economic Association, vol. 26(3), pages 1120-1171, September.
    55. Quintana-Garci­a, Cristina & Benavides-Velasco, Carlos A., 2008. "Innovative competence, exploration and exploitation: The influence of technological diversification," Research Policy, Elsevier, vol. 37(3), pages 492-507, April.
    56. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    57. Dong-Jae Kim & Bruce Kogut, 1996. "Technological Platforms and Diversification," Organization Science, INFORMS, vol. 7(3), pages 283-301, June.
    58. Atul Nerkar, 2003. "Old Is Gold? The Value of Temporal Exploration in the Creation of New Knowledge," Management Science, INFORMS, vol. 49(2), pages 211-229, February.
    59. Milgrom, Paul & Roberts, John, 1990. "The Economics of Modern Manufacturing: Technology, Strategy, and Organization," American Economic Review, American Economic Association, vol. 80(3), pages 511-528, June.
    60. Sylvain Lenfle, 2011. "The strategy of parallel approaches in projects with unforeseeable uncertainty: the Manhattan case in retrospect," Post-Print hal-00658346, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    2. Zeyu Xing & Li Wang & Debin Fang, 2023. "Unraveling the dynamics and identifying the “superstars” of R&D alliances in IUR collaboration: a two-mode network analysis in China," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-19, December.
    3. Luyun Xu & Jian Li & Xin Zhou, 2019. "Exploring new knowledge through research collaboration: the moderation of the global and local cohesion of knowledge networks," The Journal of Technology Transfer, Springer, vol. 44(3), pages 822-849, June.
    4. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    5. László Lőrincz & Guilherme Kenji Chihaya & Anikó Hannák & Dávid Takács & Balázs Lengyel & Rikard Eriksson, 2020. "Global Connections And The Structure Of Skills In Local Co-Worker Networks," CERS-IE WORKING PAPERS 2034, Institute of Economics, Centre for Economic and Regional Studies.
    6. Shafique, Muhammad & Hagedoorn, John, 2022. "Look at U: Technological scope of the acquirer, technological complementarity with the target, and post-acquisition R&D output," Technovation, Elsevier, vol. 115(C).
    7. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    8. Soda, Giuseppe & Zaheer, Akbar & Sun, Xiaoming & Cui, Wentian, 2021. "Brokerage evolution in innovation contexts: Formal structure, network neighborhoods and knowledge," Research Policy, Elsevier, vol. 50(10).
    9. Xu, Luyun & Zeng, Deming, 2021. "When does the diverse partnership of R&D alliances promote new product development? The contingent effect of the knowledge base," Technology in Society, Elsevier, vol. 65(C).
    10. Kibae Kim, 2015. "Evolution of the Global Knowledge Network: Network Analysis of Information and Communication Technologies’ Patents," TEMEP Discussion Papers 2015124, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Jul 2016.
    11. Kwangsoo Shin & Eungdo Kim & EuiSeob Jeong, 2018. "Structural Relationship and Influence between Open Innovation Capacities and Performances," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    12. Frank Neffke, 2017. "Coworker Complementarity," SPRU Working Paper Series 2017-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    13. Brennecke, Julia & Rank, Olaf, 2017. "The firm’s knowledge network and the transfer of advice among corporate inventors—A multilevel network study," Research Policy, Elsevier, vol. 46(4), pages 768-783.
    14. Guo, Min & Yang, Naiding & Wang, Jingbei & Zhang, Yanlu & Wang, Yan, 2021. "How do structural holes promote network expansion?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    15. Jiajia Hao & Chunling Li & Nosherwan Khaliq & Qingqian Yin & Mirzat Ullah, 2023. "Evolutionary Analysis of Knowledge-Based Networks of the Electronic Information Industry from a Dual Innovation Perspective," Mathematics, MDPI, vol. 11(5), pages 1-17, March.
    16. Maïder SAINT-JEAN & Nabila ARFAOUI & Eric BROUILLAT & David VIRAPIN, 2019. "Mapping technological knowledge patterns: evidence from ocean energy technologies," Cahiers du GREThA 2019-09, Groupe de Recherche en Economie Théorique et Appliquée(GREThA).
    17. Ning, Lutao & Guo, Rui, 2022. "Technological Diversification to Green Domains: Technological Relatedness, Invention Impact and Knowledge Integration Capabilities," Research Policy, Elsevier, vol. 51(1).
    18. Kok, Holmer & Faems, Dries & de Faria, Pedro, 2020. "Ties that matter: The impact of alliance partner knowledge recombination novelty on knowledge utilization in R&D alliances," Research Policy, Elsevier, vol. 49(7).
    19. Jiao, Hao & Wang, Tang & Yang, Jifeng, 2022. "Team structure and invention impact under high knowledge diversity: An empirical examination of computer workstation industry," Technovation, Elsevier, vol. 114(C).
    20. Zhao, Jianyu & Yu, Lean & Xi, Xi & Li, Shengliang, 2023. "Knowledge percolation threshold and optimization strategies of the combinatorial network for complex innovation in the digital economy," Omega, Elsevier, vol. 120(C).
    21. Zhang, Ningning & You, Dingyi & Tang, Le & Wen, Ke, 2023. "Knowledge path dependence, external connection, and radical inventions: Evidence from Chinese Academy of Sciences," Research Policy, Elsevier, vol. 52(4).
    22. Chen, Feiqiong & Liu, Huiqian & Ge, Yuhao, 2021. "How does integration affect industrial innovation through networks in technology-sourcing overseas M&A? A comparison between China and the US," Journal of Business Research, Elsevier, vol. 122(C), pages 281-292.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:spmain:info:hdl:2441/43aq8ffdqb82sbffkv69bt1eaa is not listed on IDEAS
    2. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    3. Lorenz, Steffi, 2015. "Diversität und Verbundenheit der unternehmerischen Wissensbasis: Ein neuartiger Messansatz mit Indikatoren aus Innovationsprojekten," Discussion Papers on Strategy and Innovation 15-01, Philipps-University Marburg, Department of Technology and Innovation Management (TIM).
    4. Quintana-Garci­a, Cristina & Benavides-Velasco, Carlos A., 2008. "Innovative competence, exploration and exploitation: The influence of technological diversification," Research Policy, Elsevier, vol. 37(3), pages 492-507, April.
    5. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    6. Gino Cattani, 2005. "Preadaptation, Firm Heterogeneity, and Technological Performance: A Study on the Evolution of Fiber Optics, 1970–1995," Organization Science, INFORMS, vol. 16(6), pages 563-580, December.
    7. René Belderbos & Leo Sleuwaegen & Reinhilde Veugelers, 2010. "Market Integration and Technological Leadership in Europe," European Economy - Economic Papers 2008 - 2015 403, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    8. Atul Nerkar & Srikanth Paruchuri, 2005. "Evolution of R&D Capabilities: The Role of Knowledge Networks Within a Firm," Management Science, INFORMS, vol. 51(5), pages 771-785, May.
    9. Maïder SAINT-JEAN & Nabila ARFAOUI & Eric BROUILLAT & David VIRAPIN, 2019. "Mapping technological knowledge patterns: evidence from ocean energy technologies," Cahiers du GREThA 2019-09, Groupe de Recherche en Economie Théorique et Appliquée(GREThA).
    10. Samina Karim & Aseem Kaul, 2015. "Structural Recombination and Innovation: Unlocking Intraorganizational Knowledge Synergy Through Structural Change," Organization Science, INFORMS, vol. 26(2), pages 439-455, April.
    11. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    12. Burak Dindaroğlu, 2018. "Determinants of patent quality in U.S. manufacturing: technological diversity, appropriability, and firm size," The Journal of Technology Transfer, Springer, vol. 43(4), pages 1083-1106, August.
    13. Shinjinee Chattopadhyay & Janet Bercovitz, 2020. "When one door closes, another door opens … for some: Evidence from the post‐TRIPS Indian pharmaceutical industry," Strategic Management Journal, Wiley Blackwell, vol. 41(6), pages 988-1022, June.
    14. Nesta, Lionel, 2008. "Knowledge and productivity in the world's largest manufacturing corporations," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 886-902, September.
    15. Feng Zhang & Guohua Jiang, 2019. "Combination of Complementary Technological Knowledge to Generate “Hard to Imitate” Technologies," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-24, June.
    16. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    17. Shafique, Muhammad & Hagedoorn, John, 2022. "Look at U: Technological scope of the acquirer, technological complementarity with the target, and post-acquisition R&D output," Technovation, Elsevier, vol. 115(C).
    18. Schön, Benjamin & Pyka, Andreas, 2013. "The success factors of technology-sourcing through mergers & acquisitions: An intuitive meta-analysis," FZID Discussion Papers 78-2013, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    19. T. Ravichandran & Shu Han & Sunil Mithas, 2017. "Mitigating Diminishing Returns to R&D: The Role of Information Technology in Innovation," Information Systems Research, INFORMS, vol. 28(4), pages 812-827, December.
    20. repec:hal:spmain:info:hdl:2441/7187 is not listed on IDEAS
    21. Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
    22. Bart Leten & Rene Belderbos & Bart Van Looy, 2016. "Entry and Technological Performance in New Technology Domains: Technological Opportunities, Technology Competition and Technological Relatedness," Journal of Management Studies, Wiley Blackwell, vol. 53(8), pages 1257-1291, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03429894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.