IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00658540.html
   My bibliography  Save this paper

The Number of Regimes Across Asset Returns: Identification and Economic Value

Author

Listed:
  • Mathieu Gatumel

    (CERAG - Centre d'études et de recherches appliquées à la gestion - UPMF - Université Pierre Mendès France - Grenoble 2 - CNRS - Centre National de la Recherche Scientifique)

  • Florian Ielpo

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Pictet Asset Management - Pictet Asset Management)

Abstract

A shared belief in the financial industry is that markets are driven by two types of regimes. Bull markets would be characterized by high returns and low volatility whereas bear markets would display low returns coupled with high volatility. Modeling the dynam- ics of different asset classes (stocks, bonds, commodities and currencies) with a Markov- Switching model and using a density-based test, we reject the hypothesis that two regimes are enough to capture asset returns' evolutions for many of the investigated assets. Once the accuracy of our test methodology has been assessed through Monte Carlo experi- ments, our empirical results point out that between two and five regimes are required to capture the features of each asset's distribution. Moreover, we show that only a part of the underlying number of regimes is explained by the distributional characteristics of the returns such as kurtosis. A thorough out-of-sample analysis provides additional evidence that there are more than just bulls and bears in financial markets. Finally, we high- light that taking into account the real number of regimes allows both improved portfolio returns and density forecasts.

Suggested Citation

  • Mathieu Gatumel & Florian Ielpo, 2011. "The Number of Regimes Across Asset Returns: Identification and Economic Value," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00658540, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00658540
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00658540
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00658540/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    2. John M. Maheu & Thomas H. McCurdy & Yong Song, 2012. "Components of Bull and Bear Markets: Bull Corrections and Bear Rallies," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 391-403, February.
    3. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    4. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
    5. Bruche, Max & González-Aguado, Carlos, 2010. "Recovery rates, default probabilities, and the credit cycle," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
    6. Ghysels, Eric, 1994. "On the Periodic Structure of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 289-298, July.
    7. Aaron Smith, 2005. "Forecasting in the presence of level shifts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 557-574.
    8. Maheu, John M & McCurdy, Thomas H, 2000. "Identifying Bull and Bear Markets in Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 100-112, January.
    9. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Dionne, Georges & Gauthier, Geneviève & Hammami, Khemais & Maurice, Mathieu & Simonato, Jean-Guy, 2011. "A reduced form model of default spreads with Markov-switching macroeconomic factors," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1984-2000, August.
    12. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    13. Henry, Ólan T., 2009. "Regime switching in the relationship between equity returns and short-term interest rates in the UK," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 405-414, February.
    14. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    15. Martin Sola & Zacharias Psaradakis & Fabio Spagnolo, 2005. "Testing the unbiased forward exchange rate hypothesis using a Markov switching model and instrumental variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 423-437.
    16. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    17. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    18. Al-Anaswah, Nael & Wilfling, Bernd, 2011. "Identification of speculative bubbles using state-space models with Markov-switching," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1073-1086, May.
    19. Chauvet, Marcelle & Potter, Simon, 2000. "Coincident and leading indicators of the stock market," Journal of Empirical Finance, Elsevier, vol. 7(1), pages 87-111, May.
    20. Panchenko, Valentyn & Wu, Eliza, 2009. "Time-varying market integration and stock and bond return concordance in emerging markets," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1014-1021, June.
    21. Zacharias Psaradakis & Fabio Spagnolo, 2005. "Forecast performance of nonlinear error-correction models with multiple regimes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 119-138.
    22. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    23. John M. Maheu & Thomas H. McCurdy, 2007. "Components of Market Risk and Return," Journal of Financial Econometrics, Oxford University Press, vol. 5(4), pages 560-590, Fall.
    24. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    25. Smith, Aaron & Naik, Prasad A. & Tsai, Chih-Ling, 2006. "Markov-switching model selection using Kullback-Leibler divergence," Journal of Econometrics, Elsevier, vol. 134(2), pages 553-577, October.
    26. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    27. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    28. Tang, Dragon Yongjun & Yan, Hong, 2010. "Market conditions, default risk and credit spreads," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 743-753, April.
    29. Zacharias Psaradakis & Nicola Spagnolo, 2003. "On The Determination Of The Number Of Regimes In Markov‐Switching Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 237-252, March.
    30. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    31. Goodwin, Thomas H, 1993. "Business-Cycle Analysis with a Markov-Switching Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 331-339, July.
    32. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    33. Zacharias Psaradakis & Martin Sola & Fabio Spagnolo, 2004. "On Markov error-correction models, with an application to stock prices and dividends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(1), pages 69-88.
    34. Christensen, Jens H.E. & Hansen, Ernst & Lando, David, 2004. "Confidence sets for continuous-time rating transition probabilities," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2575-2602, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:dau:papers:123456789/11711 is not listed on IDEAS
    2. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Donatien Hainaut & Yang Shen & Yan Zeng, 2018. "How do capital structure and economic regime affect fair prices of bank’s equity and liabilities?," Annals of Operations Research, Springer, vol. 262(2), pages 519-545, March.
    4. Julien Chevallier & Mathieu Gatumel & Florian Ielpo, 2013. "Understanding momentum in commodity markets," Applied Economics Letters, Taylor & Francis Journals, vol. 20(15), pages 1383-1402, October.
    5. Donatien Hainaut & Yan Shen & Yan Zeng, 2016. "How do capital structure and economic regime affect fair prices of bank's equity and liabilities?," Post-Print hal-01394133, HAL.
    6. Collet, Jerome & Ielpo, Florian, 2018. "Sector spillovers in credit markets," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 267-278.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathieu Gatumel & Florian Ielpo, 2011. "The Number of Regimes Across Asset Returns: Identification and Economic Value," Post-Print halshs-00658540, HAL.
    2. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    3. Chevallier, Julien, 2012. "Global imbalances, cross-market linkages, and the financial crisis: A multivariate Markov-switching analysis," Economic Modelling, Elsevier, vol. 29(3), pages 943-973.
    4. Haase, Felix & Neuenkirch, Matthias, 2023. "Predictability of bull and bear markets: A new look at forecasting stock market regimes (and returns) in the US," International Journal of Forecasting, Elsevier, vol. 39(2), pages 587-605.
    5. repec:dau:papers:123456789/11711 is not listed on IDEAS
    6. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    7. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    8. Chan, Kam Fong & Treepongkaruna, Sirimon & Brooks, Robert & Gray, Stephen, 2011. "Asset market linkages: Evidence from financial, commodity and real estate assets," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1415-1426, June.
    9. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    10. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
    11. Hamilton, J.D., 2016. "Macroeconomic Regimes and Regime Shifts," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 163-201, Elsevier.
    12. Bejaoui, Azza & Karaa, Adel, 2016. "Revisiting the bull and bear markets notions in the Tunisian stock market: New evidence from multi-state duration-dependence Markov-switching models," Economic Modelling, Elsevier, vol. 59(C), pages 529-545.
    13. Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
    14. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    15. Nan Li & Simon S. Kwok, 2021. "Jointly determining the state dimension and lag order for Markov‐switching vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 471-491, July.
    16. Fiorentini, Gabriele & Planas, Christophe & Rossi, Alessandro, 2016. "Skewness and kurtosis of multivariate Markov-switching processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 153-159.
    17. Chatziantoniou, Ioannis & Filis, George & Floros, Christos, 2017. "Asset prices regime-switching and the role of inflation targeting monetary policy," Global Finance Journal, Elsevier, vol. 32(C), pages 97-112.
    18. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    19. Balcilar, Mehmet & Hammoudeh, Shawkat & Asaba, Nwin-Anefo Fru, 2015. "A regime-dependent assessment of the information transmission dynamics between oil prices, precious metal prices and exchange rates," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 72-89.
    20. Dionne, Georges & Gauthier, Geneviève & Hammami, Khemais & Maurice, Mathieu & Simonato, Jean-Guy, 2011. "A reduced form model of default spreads with Markov-switching macroeconomic factors," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1984-2000, August.
    21. Mustafa Caglayan & Ozge Kandemir & Kostas Mouratidis, 2011. "Real effects of inflation uncertainty in the US," Working Papers 2011002, The University of Sheffield, Department of Economics, revised Feb 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00658540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.