IDEAS home Printed from https://ideas.repec.org/p/gue/guelph/2025-01.html
   My bibliography  Save this paper

On the time-varying causal relationships that drive bitcoin returns

Author

Listed:
  • Thanasis Stengos

    (Department of Economics and Finance, University of Guelph, Guelph ON Canada)

  • Theodore Panagiotidis

    (University of Macedonia)

  • Georgios Papapanagiotou

    (University of Macedonia)

Abstract

This paper uses a Bayesian time-varying parameter vector autoregressive (TVP-VAR) model to assess the impact of alternative drivers of bitcoin returns. We consider an extended set of alternative drivers and select the most important variables using a Bayesian variable selection method. To examine the evolution of the Granger-causality relationship between the selected variables and bitcoin returns over time, we employ a new approach based on the estimates of the TVP-VAR model and heteroscedastic-consistent Granger-causality hypothesis testing. In addition, we perform impulse response function and forecast error variance decomposition analysis. The results indicate that investor sentiment and ethereum returns affect bitcoin returns over the entire sample. Trading volume emerges as an important determinant of bitcoin returns when bitcoin prices remain relatively steady.

Suggested Citation

  • Thanasis Stengos & Theodore Panagiotidis & Georgios Papapanagiotou, 2025. "On the time-varying causal relationships that drive bitcoin returns," Working Papers 2501, University of Guelph, Department of Economics and Finance.
  • Handle: RePEc:gue:guelph:2025-01
    as

    Download full text from publisher

    File URL: http://www.uoguelph.ca/economics/repec/workingpapers/2025/2025-01.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bampinas, Georgios & Panagiotidis, Theodore & Papapanagiotou, Georgios, 2023. "Oil shocks and investor attention," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 68-81.
    2. de la Horra, Luis P. & de la Fuente, Gabriel & Perote, Javier, 2019. "The drivers of Bitcoin demand: A short and long-run analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 21-34.
    3. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
    4. Yousaf, Imran & Yarovaya, Larisa, 2022. "The relationship between trading volume, volatility and returns of Non-Fungible Tokens: evidence from a quantile approach," Finance Research Letters, Elsevier, vol. 50(C).
    5. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018. "On the determinants of bitcoin returns: A LASSO approach," Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
    6. Lin, Zih-Ying, 2021. "Investor attention and cryptocurrency performance," Finance Research Letters, Elsevier, vol. 40(C).
    7. Ji, Qiang & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2018. "Network causality structures among Bitcoin and other financial assets: A directed acyclic graph approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 203-213.
    8. Tiran Rothman, 2019. "Trading the Dream: Does Social Media Affect Investors¡¯ Activity - The Story of Twitter, Telegram and Reddit," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 10(2), pages 147-152, April.
    9. Joshua C. C. Chan, 2023. "Large Hybrid Time-Varying Parameter VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 890-905, July.
    10. Bakas, Dimitrios & Magkonis, Georgios & Oh, Eun Young, 2022. "What drives volatility in Bitcoin market?," Finance Research Letters, Elsevier, vol. 50(C).
    11. Zapata, Hector O & Rambaldi, Alicia N, 1997. "Monte Carlo Evidence on Cointegration and Causation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(2), pages 285-298, May.
    12. Jamal Bouoiyour & Refk Selmi, 2015. "What Does Bitcoin Look Like?," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 449-492, November.
    13. Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
    14. Wan, Jieru & Yin, Libo & Wu, You, 2024. "Return and volatility connectedness across global ESG stock indexes: Evidence from the time-frequency domain analysis," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 397-428.
    15. Suardi, Sandy & Rasel, Atiqur Rahman & Liu, Bin, 2022. "On the predictive power of tweet sentiments and attention on bitcoin," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 289-301.
    16. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    17. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    18. Lu, Feng-bin & Hong, Yong-miao & Wang, Shou-yang & Lai, Kin-keung & Liu, John, 2014. "Time-varying Granger causality tests for applications in global crude oil markets," Energy Economics, Elsevier, vol. 42(C), pages 289-298.
    19. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2024. "A Bayesian approach for the determinants of bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 91(C).
    20. Ben Osman, Myriam & Galariotis, Emilios & Guesmi, Khaled & Hamdi, Haykel & Naoui, Kamel, 2024. "Are markets sentiment driving the price bubbles in the virtual?," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 272-285.
    21. Fry, John, 2018. "Booms, busts and heavy-tails: The story of Bitcoin and cryptocurrency markets?," Economics Letters, Elsevier, vol. 171(C), pages 225-229.
    22. Jia, Boxiang & Shen, Dehua & Zhang, Wei, 2024. "Bitcoin market reactions to large price swings of international stock markets," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 72-88.
    23. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    24. Kubal, Jan & Kristoufek, Ladislav, 2022. "Exploring the relationship between Bitcoin price and network’s hashrate within endogenous system," International Review of Financial Analysis, Elsevier, vol. 84(C).
    25. Jesús Otero & Theodore Panagiotidis & Georgios Papapanagiotou, 2022. "Multivariate Cointegration and Temporal Aggregation: Some Further Simulation Results," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 59-70, January.
    26. Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa & Wang, Yizhi, 2022. "The cryptocurrency uncertainty index," Finance Research Letters, Elsevier, vol. 45(C).
    27. Shuping Shi & Peter C. B. Phillips & Stan Hurn, 2018. "Change Detection and the Causal Impact of the Yield Curve," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 966-987, November.
    28. Dastgir, Shabbir & Demir, Ender & Downing, Gareth & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copula-based Granger causality test," Finance Research Letters, Elsevier, vol. 28(C), pages 160-164.
    29. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    30. Lee, Adrian D. & Li, Mengling & Zheng, Huanhuan, 2020. "Bitcoin: Speculative asset or innovative technology?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
    31. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2010. "Dynamic Probabilities of Restrictions in State Space Models: An Application to the Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 370-379.
    32. Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2019. "Does twitter predict Bitcoin?," Economics Letters, Elsevier, vol. 174(C), pages 118-122.
    33. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    34. Bouri, Elie & Gupta, Rangan & Lau, Chi Keung Marco & Roubaud, David & Wang, Shixuan, 2018. "Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 297-307.
    35. Hio Loi, 2018. "The Liquidity of Bitcoin," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(1), pages 13-22, January.
    36. Ghabri, Yosra & Guesmi, Khaled & Zantour, Ahlem, 2021. "Bitcoin and liquidity risk diversification," Finance Research Letters, Elsevier, vol. 40(C).
    37. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    38. Wu, You & Ren, Wenting & Wan, Jieru & Liu, Xiaoxue, 2023. "Time-frequency volatility connectedness between fossil energy and agricultural commodities: Comparing the COVID-19 pandemic with the Russia-Ukraine conflict," Finance Research Letters, Elsevier, vol. 55(PA).
    39. Jesús Otero & Theodore Panagiotidis & Georgios Papapanagiotou, 2021. "Testing for exuberance in house prices using data sampled at different frequencies," Working Paper series 21-13, Rimini Centre for Economic Analysis.
    40. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    41. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    42. Xun Zhang & Fengbin Lu & Rui Tao & Shouyang Wang, 2021. "The time-varying causal relationship between the Bitcoin market and internet attention," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    43. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    44. Ciner, Cetin & Lucey, Brian & Yarovaya, Larisa, 2022. "Determinants of cryptocurrency returns: A LASSO quantile regression approach," Finance Research Letters, Elsevier, vol. 49(C).
    45. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    46. Syed Ali Raza & Larisa Yarovaya & Khaled Guesmi & Nida Shah, 2022. "Google Trends and cryptocurrencies: a nonparametric causality-in-quantiles analysis," International Journal of Emerging Markets, Emerald Group Publishing Limited, vol. 18(12), pages 5972-5989, May.
    47. Jingjie Xiang & Gangzheng Guo & Qing Zhao, 2022. "Testing for a Moderately Explosive Process with Structural Change in Drift," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(2), pages 300-333, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    3. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    4. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    5. Pho, Kim Hung & Ly, Sel & Lu, Richard & Hoang, Thi Hong Van & Wong, Wing-Keung, 2021. "Is Bitcoin a better portfolio diversifier than gold? A copula and sectoral analysis for China," International Review of Financial Analysis, Elsevier, vol. 74(C).
    6. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2024. "A Bayesian approach for the determinants of bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 91(C).
    7. Rubaiyat Ahsan Bhuiyan & Afzol Husain & Changyong Zhang, 2023. "Diversification evidence of bitcoin and gold from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    8. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    9. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    10. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    11. Smales, L.A., 2022. "Investor attention in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 79(C).
    12. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    13. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    14. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    15. Hoang, Lai & Vo, Duc Hong, 2024. "Google search and cross-section of cryptocurrency returns and trading activities," Journal of Behavioral and Experimental Finance, Elsevier, vol. 44(C).
    16. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    17. Wang, Chen & Shen, Dehua & Li, Youwei, 2022. "Aggregate Investor Attention and Bitcoin Return: The Long Short-term Memory Networks Perspective," Finance Research Letters, Elsevier, vol. 49(C).
    18. Fang, Tong & Su, Zhi & Yin, Libo, 2020. "Economic fundamentals or investor perceptions? The role of uncertainty in predicting long-term cryptocurrency volatility," International Review of Financial Analysis, Elsevier, vol. 71(C).
    19. Muhammad Owais Qarni & Saiqb Gulzar, 2021. "Portfolio diversification benefits of alternative currency investment in Bitcoin and foreign exchange markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-37, December.
    20. Shouyu Yao & Ahmet Sensoy & Duc Khuong Nguyen & Tong Li, 2024. "Investor attention and cryptocurrency market liquidity: a double-edged sword," Annals of Operations Research, Springer, vol. 334(1), pages 815-856, March.

    More about this item

    Keywords

    Bayesian VAR; time-varying Granger-causality; bitcoin; cryptocurrency; uncertainty; Google trends;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gue:guelph:2025-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stephen Kosempel (email available below). General contact details of provider: https://edirc.repec.org/data/degueca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.