IDEAS home Printed from https://ideas.repec.org/p/fpr/ifprid/1038.html
   My bibliography  Save this paper

An econometric investigation of impacts of sustainable land management practices on soil carbon and yield risk: A potential for climate change mitigation

Author

Listed:
  • Kato, Edward
  • Nkonya, Ephraim
  • Place, Frank
  • Mwanjalolo, Majaliwa

Abstract

We investigate the impacts of sustainable land management practices on soil carbon stocks and also impacts of soil carbon on the mean and variance of crop production using econometric tools. Using a cross-sectional plot-level dataset collected from three agroecological zones of Uganda with soil carbon measured at a depth of 0 to 15 centimeters, our results have robustly shown that irrigation, fertilizers, improved fallow, crop residues, mulching, and trash lines are positively and significantly associated with higher soil carbon, corroborating results from agronomic experiments. However, we found crop rotation associated with lower soil carbon, which has also been observed in some agronomic experiments. Soil carbon has shown a significant nonlinear effect on crop production with the threshold occurring at 29.96 milligrams of carbon per hectare, above which farmers start to see significant positive effects on crop production. Furthermore, we found soil carbon to be associated with lower variance of crop production; hence, soil carbon is an indicator of crop yield loss risk (soil carbon has a risk-reducing effect). These empirical results have demonstrated strong evidence for developing countries of the potential of sustainable land management practices to enhance carbon sequestration and also the potential of soil carbon to reduce production risk. The results have implications for the role that soil carbon can play in adaptation to climate change and provision of ecosystem services.

Suggested Citation

  • Kato, Edward & Nkonya, Ephraim & Place, Frank & Mwanjalolo, Majaliwa, 2010. "An econometric investigation of impacts of sustainable land management practices on soil carbon and yield risk: A potential for climate change mitigation," IFPRI discussion papers 1038, International Food Policy Research Institute (IFPRI).
  • Handle: RePEc:fpr:ifprid:1038
    as

    Download full text from publisher

    File URL: http://www.ifpri.org/sites/default/files/publications/ifpridp01038.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nkonya, Ephraim M. & Pender, John L. & Jagger, Pamela & Sserunkuuma, Dick & Kaizzi, Crammer & Ssali, Henry, 2004. "Strategies for sustainable land management and poverty reduction in Uganda:," Research reports 133, International Food Policy Research Institute (IFPRI).
    2. Just, Richard E. & Pope, Rulon D., 1978. "Stochastic specification of production functions and economic implications," Journal of Econometrics, Elsevier, vol. 7(1), pages 67-86, February.
    3. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    4. John Pender & Berhanu Gebremedhin, 2008. "Determinants of Agricultural and Land Management Practices and Impacts on Crop Production and Household Income in the Highlands of Tigray, Ethiopia," Journal of African Economies, Centre for the Study of African Economies, vol. 17(3), pages 395-450, June.
    5. Nkonya, Ephraim & Pender, John & Kaizzi, Kayuki C. & Kato, Edward & Mugarura, Samuel & Ssali, Henry & Muwonge, James, 2008. "Linkages between land management, land degradation, and poverty in Sub-Saharan Africa: The case of Uganda," Research reports 159, International Food Policy Research Institute (IFPRI).
    6. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    7. Griffin, Ronald C. & Montgomery, John M. & Rister, M. Edward, 1987. "Selecting Functional Form In Production Function Analysis," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 12(2), pages 1-12, December.
    8. Di Falco, Salvatore & Perrings, Charles, 2005. "Crop biodiversity, risk management and the implications of agricultural assistance," Ecological Economics, Elsevier, vol. 55(4), pages 459-466, December.
    9. Melinda Smale & Jason Hartell & Paul W. Heisey & Ben Senauer, 1998. "The Contribution of Genetic Resources and Diversity to Wheat Production in the Punjab of Pakistan," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(3), pages 482-493.
    10. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    11. John Pender & Berhanu Gebremedhin & Saumuel Benin & Simeon Ehui, 2001. "Strategies for Sustainable Agricultural Development in the Ethiopian Highlands," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(5), pages 1231-1240.
    12. Hans G. P. Jansen & John Pender & Amy Damon & Willem Wielemaker & Rob Schipper, 2006. "Policies for sustainable development in the hillside areas of Honduras: a quantitative livelihoods approach," Agricultural Economics, International Association of Agricultural Economists, vol. 34(2), pages 141-153, March.
    13. Ruerd Ruben & Harry Clemens, 2000. "Rural Off-Farm Employment and Food Security Policies in Honduras," Palgrave Macmillan Books, in: Wim Pelupessy & Ruerd Ruben (ed.), Agrarian Policies in Central America, chapter 8, pages 170-188, Palgrave Macmillan.
    14. Pender, John & Ssewanyana, Sarah & Edward, Kato & Nkonya, Ephraim M., 2004. "Linkages between poverty and land management in rural Uganda: evidence from the Uganda National Household Survey, 1999/00," EPTD discussion papers 122, International Food Policy Research Institute (IFPRI).
    15. Jansen, Hans G. P. & Pender, John L. & Damon, Amy & Schipper, Rob, 2006. "Rural development policies and sustainable land use in the hillside areas of Honduras: a quantitative livelihoods approach," Research reports 147, International Food Policy Research Institute (IFPRI).
    16. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kato, Edward & Nkonya, Ephraim & Place, Frank M., 2011. "Heterogeneous treatment effects of integrated soil fertility management on crop productivity: Evidence from Nigeria," IFPRI discussion papers 1089, International Food Policy Research Institute (IFPRI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kato, E., 2009. "Soil and water conservation technologies: a buffer against production risk in the face of climate change?: insights from the Nile Basin in Ethiopia," IWMI Working Papers H042477, International Water Management Institute.
    2. Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
    3. Kato, Edward & Nkonya, Ephraim & Place, Frank M., 2011. "Heterogeneous treatment effects of integrated soil fertility management on crop productivity: Evidence from Nigeria," IFPRI discussion papers 1089, International Food Policy Research Institute (IFPRI).
    4. Tanui, Joseph & Groeneveld, Rolf & Klomp, Jeroen & Mowo, Jeremiahs & Ierland, Ekko C. van, 2013. "Explaining investments in sustainable land management: The role of various income sources in the smallholder farming systems of western Kenya," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 161275, African Association of Agricultural Economists (AAAE).
    5. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    6. Soltani, Arezoo & Angelsen, Arild & Eid, Tron & Naieni, Mohammad Saeid Noori & Shamekhi, Taghi, 2012. "Poverty, sustainability, and household livelihood strategies in Zagros, Iran," Ecological Economics, Elsevier, vol. 79(C), pages 60-70.
    7. Ketema, Mengistu & Bauer, Siegfried, 2011. "Determinants of Manure and Fertilizer Applications in Eastern Highlands of Ethiopia," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 50(3), pages 1-16.
    8. Gebremariam, Gebrelibanos & Tesfaye, Wondimagegn, 2018. "The heterogeneous effect of shocks on agricultural innovations adoption: Microeconometric evidence from rural Ethiopia," Food Policy, Elsevier, vol. 74(C), pages 154-161.
    9. Tankari, Mahamadou Roufahi, 2015. "Action Levers For A Sustainable Farmland Management In Niger," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 3(4), pages 1-12, October.
    10. Tran Quang Tuyen & Steven Lim & Michael P. Cameron & Vu Van Huong, 2014. "Farmland loss and livelihood outcomes: a microeconometric analysis of household surveys in Vietnam," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 19(3), pages 423-444, July.
    11. Nastis, Stefanos A. & Michailidis, Anastasios & Mattas, Konstadinos, 2011. "Crop biodiversity repercussions of subsidized organic farming in Greece," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114628, European Association of Agricultural Economists.
    12. ERREYGERS, Guido & FEREDE, Tadele, 2009. "The end of subsistence farming: Growth dynamics and investments in human and environmental capital in rural Ethiopia," Working Papers 2009008, University of Antwerp, Faculty of Business and Economics.
    13. Pender, John & Nkonya, Ephraim & Jagger, Pamela & Sserunkuuma, Dick & Ssali, Henry, 2004. "Strategies to increase agricultural productivity and reduce land degradation: evidence from Uganda," Agricultural Economics, Blackwell, vol. 31(2-3), pages 181-195, December.
    14. Lee, Heera & Bogner, Christina & Lee, Saem & Koellner, Thomas, 2016. "Crop selection under price and yield fluctuation: Analysis of agro-economic time series from South Korea," Agricultural Systems, Elsevier, vol. 148(C), pages 1-11.
    15. Kirui, Oliver & Mrzabaev, Alisher, 2015. "Costs of landj degradation in Eastern Africa," 2015 Conference, August 9-14, 2015, Milan, Italy 212007, International Association of Agricultural Economists.
    16. Dung, Luu Tien & Phi Ho, Dinh & Thi Kim Hiep, Nguyen & Hoi, Phan Thi, 2018. "The Determinants of Rice Farmers Adoption of Sustainable Agricultural Technologies in the Mekong Delta, Vietnam," Asian Journal of Applied Economics, Kasetsart University, Center for Applied Economics Research, vol. 25(2), December.
    17. Walelign, Solomon Zena & Jiao, Xi, 2017. "Dynamics of rural livelihoods and environmental reliance: Empirical evidence from Nepal," Forest Policy and Economics, Elsevier, vol. 83(C), pages 199-209.
    18. Mulugeta Tilahun Keno & Jane Wamatu & Ashraf Alkhtib & Taye Tolemariam & Solomon Demeke & Geert Paul Jules Janssens, 2021. "Barley Straw Use for Animal Feed and Soil Mulch in Ethiopian Highlands Mixed Crop-Livestock Systems," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    19. Pender, John, 2004. "Development pathways for hillsides and highlands: some lessons from Central America and East Africa," Food Policy, Elsevier, vol. 29(4), pages 339-367, August.
    20. Christopher B. Barrett & Christine M. Moser & Oloro V. McHugh & Joeli Barison, 2004. "Better Technology, Better Plots, or Better Farmers? Identifying Changes in Productivity and Risk among Malagasy Rice Farmers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 869-888.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fpr:ifprid:1038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ifprius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.