IDEAS home Printed from https://ideas.repec.org/p/foi/wpaper/2021_07.html
   My bibliography  Save this paper

River pollution abatement: Decentralized solutions and smart contracts

Author

Listed:
  • Jens Gudmundsson

    (Department of Food and Resource Economics, University of Copenhagen)

  • Jens Leth Hougaard

    (Department of Food and Resource Economics, University of Copenhagen)

Abstract

In river systems, costly upstream pollution abatement creates downstream welfare gains. Absent adequate agreement on how to share the gains, upstream regions lack incentives to reduce pollution levels. We develop a model that makes explicit the impact of water quality on production benefits and suggest a solution for sharing the gains of optimal pollution abatement, namely the Shapley value of an underlying convex cooperative game. We provide a decentralized implementation through a smart contract to automate negotiations. It ensures a socially optimal agreement supported by fair compensations to regions that turn to cleaner production from those that pollute.

Suggested Citation

  • Jens Gudmundsson & Jens Leth Hougaard, 2021. "River pollution abatement: Decentralized solutions and smart contracts," IFRO Working Paper 2021/07, University of Copenhagen, Department of Food and Resource Economics, revised Oct 2021.
  • Handle: RePEc:foi:wpaper:2021_07
    as

    Download full text from publisher

    File URL: http://okonomi.foi.dk/workingpapers/WPpdf/WP2021/IFRO_WP_2021_07_update.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    2. Alcalde-Unzu, Jorge & Gómez-Rúa, María & Molis, Elena, 2015. "Sharing the costs of cleaning a river: the Upstream Responsibility rule," Games and Economic Behavior, Elsevier, vol. 90(C), pages 134-150.
    3. Garg, Teevrat & Hamilton, Stuart E. & Hochard, Jacob P. & Kresch, Evan Plous & Talbot, John, 2018. "(Not so) gently down the stream: River pollution and health in Indonesia," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 35-53.
    4. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2012. "Fair agreements for sharing international rivers with multiple springs and externalities," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 388-403.
    5. Ambec, Stefan & Dinar, Ariel & McKinney, Daene, 2013. "Water sharing agreements sustainable to reduced flows," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 639-655.
    6. Topkis, Donald M., 1987. "Activity optimization games with complementarity," European Journal of Operational Research, Elsevier, vol. 28(3), pages 358-368, March.
    7. Lai, Wangyang, 2017. "Pesticide use and health outcomes: Evidence from agricultural water pollution in China," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 93-120.
    8. Erik Ansink & Hans-Peter Weikard, 2012. "Sequential sharing rules for river sharing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(2), pages 187-210, February.
    9. Ansink, Erik & Weikard, Hans-Peter, 2009. "Contested water rights," European Journal of Political Economy, Elsevier, vol. 25(2), pages 247-260, June.
    10. Sylvain Beal & Amandine Ghintran & Eric Remila & Philippe Solal, 2013. "The River Sharing Problem: A Survey," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-19.
    11. Jorge Alcalde-Unzu & María Gómez-Rúa & Elena Molis, 2021. "Allocating the costs of cleaning a river: expected responsibility versus median responsibility," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 185-214, March.
    12. van den Brink, René & He, Simin & Huang, Jia-Ping, 2018. "Polluted river problems and games with a permission structure," Games and Economic Behavior, Elsevier, vol. 108(C), pages 182-205.
    13. Cai, Hongbin & Chen, Yuyu & Gong, Qing, 2016. "Polluting thy neighbor: Unintended consequences of China׳s pollution reduction mandates," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 86-104.
    14. Bezalel Peleg & Peter Sudhölter, 2007. "Introduction to the Theory of Cooperative Games," Theory and Decision Library C, Springer, edition 0, number 978-3-540-72945-7, July.
    15. Sigman, Hilary, 2005. "Transboundary spillovers and decentralization of environmental policies," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 82-101, July.
    16. Gudmundsson, Jens & Hougaard, Jens Leth & Ko, Chiu Yu, 2019. "Decentralized mechanisms for river sharing," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 67-81.
    17. Panfei Sun & Dongshuang Hou & Hao Sun, 2019. "Responsibility and sharing the cost of cleaning a polluted river," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 143-156, February.
    18. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    19. Hossain Md Anawar & Rezaul Chowdhury, 2020. "Remediation of Polluted River Water by Biological, Chemical, Ecological and Engineering Processes," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuzhi Yang & Erik Ansink & Jens Gudmundsson, 2023. "How to Pollute a River If You Must," Tinbergen Institute Discussion Papers 23-036/VIII, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gudmundsson, Jens & Hougaard, Jens Leth & Ko, Chiu Yu, 2019. "Decentralized mechanisms for river sharing," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 67-81.
    2. Ansink, Erik & Gengenbach, Michael & Weikard, Hans-Peter, 2012. "River Sharing and Water Trade," Climate Change and Sustainable Development 122860, Fondazione Eni Enrico Mattei (FEEM).
    3. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Genjiu Xu, 2019. "Sharing a Polluted River under Waste Flow Control," GREDEG Working Papers 2019-23, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    4. Erik Ansink & Hans-Peter Weikard, 2015. "Composition properties in the river claims problem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 807-831, April.
    5. Rene van den Brink & Saish Nevrekar, 2020. "Peaceful Agreements to Share a River," Tinbergen Institute Discussion Papers 20-016/II, Tinbergen Institute.
    6. Erik Ansink & Harold Houba, 2014. "The Economics of Transboundary River Management," Tinbergen Institute Discussion Papers 14-132/VIII, Tinbergen Institute.
    7. Jorge Alcalde-Unzu & María Gómez-Rúa & Elena Molis, 2021. "Allocating the costs of cleaning a river: expected responsibility versus median responsibility," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 185-214, March.
    8. Wenzhong Li & Genjiu Xu & Rene van den Brink, 2021. "Sharing the cost of cleaning up a polluted river," Tinbergen Institute Discussion Papers 21-028/II, Tinbergen Institute.
    9. Ansink, Erik & Houba, Harold, 2016. "Sustainable agreements on stochastic river flow," Resource and Energy Economics, Elsevier, vol. 44(C), pages 92-117.
    10. Wenzhong Li & Genjiu Xu & René van den Brink, 2023. "Two new classes of methods to share the cost of cleaning up a polluted river," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(1), pages 35-59, July.
    11. Yuzhi Yang & Erik Ansink & Jens Gudmundsson, 2023. "How to Pollute a River If You Must," Tinbergen Institute Discussion Papers 23-036/VIII, Tinbergen Institute.
    12. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, July.
    13. Lea Melnikovová, 2017. "Can Game Theory Help to Mitigate Water Conflicts in the Syrdarya Basin?," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(4), pages 1393-1401.
    14. Valencia-Toledo, Alfredo & Vidal-Puga, Juan, 2023. "A linear model for freight transportation," MPRA Paper 119301, University Library of Munich, Germany.
    15. Gerard van der Laan & Nigel Moes, 2012. "Transboundary Externalities and Property Rights: An International River Pollution Model," Tinbergen Institute Discussion Papers 12-006/1, Tinbergen Institute.
    16. Takaaki Abe & Satoshi Nakada, 2023. "Core stability of the Shapley value for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 60(4), pages 523-543, May.
    17. René van den Brink & Simin He & Jia-Ping Huang, 2015. "Polluted River Problems and Games with a Permission Structure," Tinbergen Institute Discussion Papers 15-108/II, Tinbergen Institute.
    18. Panfei Sun & Dongshuang Hou & Hao Sun, 2019. "Responsibility and sharing the cost of cleaning a polluted river," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 143-156, February.
    19. Jens Gudmundsson & Jens Leth Hougaard & Chiu Yu Ko, 2020. "Sharing sequentially triggered losses," IFRO Working Paper 2020/05, University of Copenhagen, Department of Food and Resource Economics.
    20. Shivshanker Singh Patel & Parthasarathy Ramachandran, 2019. "A Bilateral River Bargaining Problem with Negative Externality," Papers 1912.05844, arXiv.org.

    More about this item

    Keywords

    River pollution; Decentralized mechanism; Shapley value; Water quality; Smart contract;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:foi:wpaper:2021_07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geir Tveit (email available below). General contact details of provider: https://edirc.repec.org/data/foikudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.