Explaining Machine Learning by Bootstrapping Partial Marginal Effects and Shapley Values
Author
Abstract
Suggested Citation
DOI: 10.17016/FEDS.2024.075
Download full text from publisher
Other versions of this item:
- Thomas R. Cook & Zach Modig & Nathan M. Palmer, 2021. "Explaining Machine Learning by Bootstrapping Partial Marginal Effects and Shapley Values," Research Working Paper RWP 21-12, Federal Reserve Bank of Kansas City, revised 06 Aug 2024.
References listed on IDEAS
- Glaeser, Edward & Sinai, Todd (ed.), 2013. "Housing and the Financial Crisis," National Bureau of Economic Research Books, University of Chicago Press, number 9780226030586.
- Limsombunchai, Visit, 2004. "House Price Prediction: Hedonic Price Model vs. Artificial Neural Network," 2004 Conference, June 25-26, 2004, Blenheim, New Zealand 97781, New Zealand Agricultural and Resource Economics Society.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Edward E. Leamer, 2015. "Housing Really Is the Business Cycle: What Survives the Lessons of 2008–09?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(S1), pages 43-50, March.
- Marianne Bertrand & Sendhil Mullainathan, 2004.
"Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination,"
American Economic Review, American Economic Association, vol. 94(4), pages 991-1013, September.
- Marianne Bertrand & Sendhil Mullainathan, 2003. "Are emily and greg more employable than lakisha and jamal? A field experiment on labor market discrimination," Natural Field Experiments 00216, The Field Experiments Website.
- Marianne Bertrand & Sendhil Mullainathan, 2003. "Are Emily and Greg More Employable than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination," NBER Working Papers 9873, National Bureau of Economic Research, Inc.
- Richard Williams, 2012. "Using the margins command to estimate and interpret adjusted predictions and marginal effects," Stata Journal, StataCorp LLC, vol. 12(2), pages 308-331, June.
- Daniel P. McMillen & Christian L. Redfearn, 2010. "Estimation And Hypothesis Testing For Nonparametric Hedonic House Price Functions," Journal of Regional Science, Wiley Blackwell, vol. 50(3), pages 712-733, August.
- Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
- Michael J. Hanmer & Kerem Ozan Kalkan, 2013. "Behind the Curve: Clarifying the Best Approach to Calculating Predicted Probabilities and Marginal Effects from Limited Dependent Variable Models," American Journal of Political Science, John Wiley & Sons, vol. 57(1), pages 263-277, January.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- W.J. McCluskey & M. McCord & P.T. Davis & M. Haran & D. McIlhatton, 2013. "Prediction accuracy in mass appraisal: a comparison of modern approaches," Journal of Property Research, Taylor & Francis Journals, vol. 30(4), pages 239-265, December.
- Joachim Zietz & Emily Zietz & G. Sirmans, 2008.
"Determinants of House Prices: A Quantile Regression Approach,"
The Journal of Real Estate Finance and Economics, Springer, vol. 37(4), pages 317-333, November.
- Joachim Zietz & Emily N. Zietz & G. Stacy Sirmans., 2007. "Determinants of House Prices: A Quantile Regression Approach," Working Papers 200706, Middle Tennessee State University, Department of Economics and Finance.
- Edward L. Glaeser & Todd Sinai, 2013. "Housing and the Financial Crisis," NBER Books, National Bureau of Economic Research, Inc, number glae11-1, March.
- Qingyuan Zhao & Trevor Hastie, 2021. "Causal Interpretations of Black-Box Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 272-281, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- repec:fip:fedkrr:96511 is not listed on IDEAS
- Thomas R. Cook & Nathan M. Palmer, 2023. "Understanding Models and Model Bias with Gaussian Processes," Research Working Paper RWP 23-07, Federal Reserve Bank of Kansas City.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jose Torres-Pruñonosa & Pablo GarcÃa-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
- repec:osf:socarx:tjkcy_v1 is not listed on IDEAS
- Asproudis, Elias & Gedikli, Cigdem & Talavera, Oleksandr & Yilmaz, Okan, 2024.
"Returns to solar panels in the housing market: A meta learner approach,"
Energy Economics, Elsevier, vol. 137(C).
- Elias Asproudis & Cigdem Gedikli & Oleksandr Talavera & Okan Yilmaz, 2023. "Returns to Solar Panels in the Housing Market: A Meta Learner Approach," Discussion Papers 23-01, Department of Economics, University of Birmingham.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021.
"Is It Possible to Forecast the Price of Bitcoin?,"
Forecasting, MDPI, vol. 3(2), pages 1-44, May.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-04250269, HAL.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Post-Print halshs-04250269, HAL.
- Islam, Towhidul & Meade, Nigel & Carson, Richard T. & Louviere, Jordan J. & Wang, Juan, 2022. "The usefulness of socio-demographic variables in predicting purchase decisions: Evidence from machine learning procedures," Journal of Business Research, Elsevier, vol. 151(C), pages 324-338.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
- Ay, Jean-Sauveur & Le Gallo, Julie, 2021.
"The Signaling Values of Nested Wine Names,"
Working Papers
321851, American Association of Wine Economists.
- Jean-Sauveur Ay & Julie Le Gallo, 2021. "The signaling value of nested wine names," Post-Print hal-03268014, HAL.
- Sakaue, Katsuki, 2018. "Informal fee charge and school choice under a free primary education policy: Panel data evidence from rural Uganda," International Journal of Educational Development, Elsevier, vol. 62(C), pages 112-127.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," ERSA Working Paper Series, Economic Research Southern Africa, vol. 0.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Hurmeranta, Risto & Lyytikäinen, Teemu, 2025. "Nominal Loss Aversion in the Housing Market and Household Mobility," Working Papers 178, VATT Institute for Economic Research.
- Begley, Jaclene & Chan, Sewin, 2018. "The effect of housing wealth shocks on work and retirement decisions," Regional Science and Urban Economics, Elsevier, vol. 73(C), pages 180-195.
- Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2023.
"Measuring the value of rent stabilization and understanding its implications for racial inequality: Evidence from New York City,"
Regional Science and Urban Economics, Elsevier, vol. 103(C).
- Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2022. "Measuring the Value of Rent Stabilization and Understanding its Implications for Racial Inequality: Evidence from New York City," GLO Discussion Paper Series 1102, Global Labor Organization (GLO).
- Dang, Hai-Anh & Carleto, Gero & Gourlay, Sydney & Abanokova, Kseniya, 2023.
"Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda,"
2023 Annual Meeting, July 23-25, Washington D.C.
335648, Agricultural and Applied Economics Association.
- Dang, Hai-Anh H & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," IZA Discussion Papers 17064, Institute of Labor Economics (IZA).
- Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
- Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
- Ono, Arito & Uchida, Hirofumi & Udell, Gregory F. & Uesugi, Iichiro, 2021.
"Lending pro-cyclicality and macroprudential policy: Evidence from Japanese LTV ratios,"
Journal of Financial Stability, Elsevier, vol. 53(C).
- Arito Ono & Hirofumi Uchida & Gregory Udell & Iichiro Uesugi, 2014. "Lending Pro-Cyclicality and Macro-Prudential Policy: Evidence from Japanese LTV Ratios," Working Papers e070, Tokyo Center for Economic Research.
- Ono, Arito & Uchida, Hirofumi & Udell, Gregory F. & Uesugi, Iichiro, 2016. "Lending Pro-Cyclicality and Macro-Prudential Policy: Evidence from Japanese LTV Ratios," HIT-REFINED Working Paper Series 41, Institute of Economic Research, Hitotsubashi University.
- Ballestar, María Teresa & Mir, Miguel Cuerdo & Pedrera, Luis Miguel Doncel & Sainz, Jorge, 2024. "Effectiveness of tutoring at school: A machine learning evaluation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Sciences Po Economics Publications (main) halshs-03673240, HAL.
- Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
More about this item
Keywords
; ; ;JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-11-04 (Big Data)
- NEP-CMP-2024-11-04 (Computational Economics)
- NEP-ECM-2024-11-04 (Econometrics)
- NEP-GTH-2024-11-04 (Game Theory)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2024-75. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/fip/fedgfe/2024-75.html