IDEAS home Printed from https://ideas.repec.org/p/ags/aaea23/335648.html

Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda

Author

Listed:
  • Dang, Hai-Anh
  • Carleto, Gero
  • Gourlay, Sydney
  • Abanokova, Kseniya

Abstract

Monitoring soil quality provides indispensable inputs for effective policy advice, but very few poorer countries can implement high-quality surveys on soil. We offer an alternative, low-cost imputation-based approach to generating various soil quality indicators. The estimation results validate well against objective measures based on benchmark surveys for Ethiopia and Uganda both for the mean values and the entire distributions of these indicators based on multiple imputation (MI) methods. Machine learning methods also perform well but mostly for the mean values. Furthermore, our imputation models can be combined with other publicly available, large-scale datasets on soil quality generated by model-based analysis with earth observations to provide improved estimates. Our results offer relevant inputs for future data collection efforts.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Dang, Hai-Anh & Carleto, Gero & Gourlay, Sydney & Abanokova, Kseniya, 2023. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," 2023 Annual Meeting, July 23-25, Washington D.C. 335648, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea23:335648
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/335648/files/27087.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • O12 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Microeconomic Analyses of Economic Development
    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea23:335648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.