IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2020-01.html
   My bibliography  Save this paper

The Power of Narratives in Economic Forecasts

Author

Abstract

We apply textual analysis tools to the narratives that accompany Federal Reserve Board economic forecasts to measure the degree of optimism versus pessimism expressed in those narratives. Text sentiment is strongly correlated with the accompanying economic point forecasts, positively for GDP forecasts and negatively for unemployment and inflation forecasts. Moreover, our sentiment measure predicts errors in FRB and private forecasts for GDP growth and unemployment up to four quarters out. Furthermore, stronger sentiment predicts tighter than expected monetary policy and higher future stock returns. Quantile regressions indicate that most of sentiment’s forecasting power arises from signaling downside risks to the economy and stock prices.

Suggested Citation

  • Christopher A. Hollrah & Steven A. Sharpe & Nitish R. Sinha, 2020. "The Power of Narratives in Economic Forecasts," Finance and Economics Discussion Series 2020-001, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2020-01
    DOI: 10.17016/FEDS.2020.001
    as

    Download full text from publisher

    File URL: https://www.federalreserve.gov/econres/feds/files/2020001pap.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2020.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Sinclair, Tara M. & Joutz, Fred & Stekler, H.O., 2010. "Can the Fed predict the state of the economy?," Economics Letters, Elsevier, vol. 108(1), pages 28-32, July.
    3. Carlos Carvalho & Eric Hsu & Fernanda Nechio, 2016. "Measuring the effect of the zero lower bound on monetary policy," Working Paper Series 2016-6, Federal Reserve Bank of San Francisco.
    4. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    5. Aggarwal, Raj & Mohanty, Sunil & Song, Frank, 1995. "Are Survey Forecasts of Macroeconomic Variables Rational?," The Journal of Business, University of Chicago Press, vol. 68(1), pages 99-119, January.
    6. Gurkaynak, Refet S. & Sack, Brian T. & Swanson, Eric P., 2007. "Market-Based Measures of Monetary Policy Expectations," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 201-212, April.
    7. Jones, Jacob T. & Sinclair, Tara M. & Stekler, Herman O., 2020. "A textual analysis of Bank of England growth forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1478-1487.
    8. Emi Nakamura & Jón Steinsson, 2018. "High-Frequency Identification of Monetary Non-Neutrality: The Information Effect," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1283-1330.
    9. Stephen Hansen & Michael McMahon, 2016. "Shocking Language: Understanding the Macroeconomic Effects of Central Bank Communication," NBER Chapters, in: NBER International Seminar on Macroeconomics 2015, National Bureau of Economic Research, Inc.
    10. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    11. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    12. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    13. Asquith, Paul & Mikhail, Michael B. & Au, Andrea S., 2005. "Information content of equity analyst reports," Journal of Financial Economics, Elsevier, vol. 75(2), pages 245-282, February.
    14. Robert J. Shiller, 2017. "Narrative Economics," American Economic Review, American Economic Association, vol. 107(4), pages 967-1004, April.
    15. Antonello D'Agostino & Karl Whelan, 2008. "Federal Reserve Information During the Great Moderation," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 609-620, 04-05.
    16. Matthew Gentzkow & Bryan Kelly & Matt Taddy, 2019. "Text as Data," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 535-574, September.
    17. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    18. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    19. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015. "Information rigidities: Comparing average and individual forecasts for a large international panel," International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
    20. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    21. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    22. Zarnowitz, Victor, 1985. "Rational Expectations and Macroeconomic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(4), pages 293-311, October.
    23. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    24. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    25. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    26. Charles W. Calomiris & Harry Mamaysky, 2018. "How News and Its Context Drive Risk and Returns Around the World," NBER Working Papers 24430, National Bureau of Economic Research, Inc.
    27. Refet S. Gürkaynak & Brian Sack & Eric Swanson, 2005. "The Sensitivity of Long-Term Interest Rates to Economic News: Evidence and Implications for Macroeconomic Models," American Economic Review, American Economic Association, vol. 95(1), pages 425-436, March.
    28. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    29. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    30. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    31. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    32. Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
    33. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    34. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
    2. Michael Smolyansky & Gustavo A. Suarez, 2021. "Monetary policy and the corporate bond market: How important is the Fed information effect?," Finance and Economics Discussion Series 2021-010, Board of Governors of the Federal Reserve System (U.S.).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher A. Hollrah & Steven A. Sharpe & Nitish R. Sinha, 2017. "What's the Story? A New Perspective on the Value of Economic Forecasts," Finance and Economics Discussion Series 2017-107, Board of Governors of the Federal Reserve System (U.S.).
    2. Sharpe, Steven A. & Sinha, Nitish R. & Hollrah, Christopher A., 2023. "The power of narrative sentiment in economic forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1097-1121.
    3. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
    4. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    5. Hansen, Stephen & McMahon, Michael & Tong, Matthew, 2019. "The long-run information effect of central bank communication," Journal of Monetary Economics, Elsevier, vol. 108(C), pages 185-202.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    8. , & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," CEPR Discussion Papers 16357, C.E.P.R. Discussion Papers.
    9. Gardner, Ben & Scotti, Chiara & Vega, Clara, 2022. "Words speak as loudly as actions: Central bank communication and the response of equity prices to macroeconomic announcements," Journal of Econometrics, Elsevier, vol. 231(2), pages 387-409.
    10. Hubert, Paul & Labondance, Fabien, 2021. "The signaling effects of central bank tone," European Economic Review, Elsevier, vol. 133(C).
    11. Bennett Schmanski & Chiara Scotti & Clara Vega, 2023. "Fed Communication, News, Twitter, and Echo Chambers," Finance and Economics Discussion Series 2023-036, Board of Governors of the Federal Reserve System (U.S.).
    12. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    13. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    14. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    15. McNeil, James, 2023. "Monetary policy and the term structure of inflation expectations with information frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    16. Chen, Zhengyang, 2019. "The Long-term Rate and Interest Rate Volatility in Monetary Policy Transmission," MPRA Paper 96339, University Library of Munich, Germany.
    17. Massimo Ferrari Minesso & Laura Lebastard & Helena Mezo, 2023. "Text-Based Recession Probabilities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 415-438, June.
    18. Berge, Travis J. & Chang, Andrew C. & Sinha, Nitish R., 2019. "Evaluating the conditionality of judgmental forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1627-1635.
    19. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    20. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.

    More about this item

    Keywords

    Text analysis; Economic forecasts; Monetary policy; Stock returns; Narratives;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2020-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.