IDEAS home Printed from https://ideas.repec.org/p/eth/wpswif/15-208.html
   My bibliography  Save this paper

Information v. Energy Efficiency Incentives: Evidence from Residential Electricity Consumption in Maryland

Author

Abstract

We focus on two utility programs intended to reduce energy usage and the associated CO2 emissions—a home energy audit and rebates on the purchase of high-efficiency air-source heat pumps. We use a unique panel dataset from participating and non-participating households to estimate the average treatment effect of participating in either program on electricity usage. We fit models with household-by-season, season-by-year, and household-by-year fixed effects to account for all possible confounders that might be influence energy usage. Since the programs are voluntary, we seek to restore near-exogeneity of the program “treatment” by matching participating households with control households. We deploy coarsened exact matching (CEM; Iacus et al., 2011) as our main matching method. We ask whether it is sufficient to match households based on past electricity usage, or if we gain by adding structural characteristics of the home, including heating system type. We find that the two programs reduce electricity usage by 5% on average. The effects are strong in both winter and summer for the energy audit group but appear to be stronger in the winter for the heat pump rebate group. Adding house characteristics to the matching variables does seem to affect results, suggesting that using past usage alone may not be sufficient to identify the effects of program participation.

Suggested Citation

  • Anna Alberini & Charles Towe, 2015. "Information v. Energy Efficiency Incentives: Evidence from Residential Electricity Consumption in Maryland," CER-ETH Economics working paper series 15/208, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  • Handle: RePEc:eth:wpswif:15-208
    as

    Download full text from publisher

    File URL: http://www.cer.ethz.ch/content/dam/ethz/special-interest/mtec/cer-eth/cer-eth-dam/documents/working-papers/WP-15-208.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    2. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    3. Gans, Will & Alberini, Anna & Longo, Alberto, 2013. "Smart meter devices and the effect of feedback on residential electricity consumption: Evidence from a natural experiment in Northern Ireland," Energy Economics, Elsevier, vol. 36(C), pages 729-743.
    4. David S. Loughran and Jonathan Kulick, 2004. "Demand-Side Management and Energy Efficiency in the United States," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 19-44.
    5. Abadie, Alberto & Imbens, Guido W., 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 1-11.
    6. Hassett, Kevin A. & Metcalf, Gilbert E., 1995. "Energy tax credits and residential conservation investment: Evidence from panel data," Journal of Public Economics, Elsevier, vol. 57(2), pages 201-217, June.
    7. Paul L. Joskow & Donald B. Marron, 1992. "What Does a Negawatt Really Cost? Evidence from Utility Conservation Programs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 41-74.
    8. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    9. Michael Greenstone & Elizabeth Kopits & Ann Wolverton, 2013. "Developing a Social Cost of Carbon for US Regulatory Analysis: A Methodology and Interpretation," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 23-46, January.
    10. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    11. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    12. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    13. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    14. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    15. Maximilian Auffhammer & Carl Blumstein & Meredith Fowlie, 2008. "Demand-Side Management and Energy Efficiency Revisited," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 91-104.
    16. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    17. Boomhower, Judson & Davis, Lucas W., 2014. "A credible approach for measuring inframarginal participation in energy efficiency programs," Journal of Public Economics, Elsevier, vol. 113(C), pages 67-79.
    18. Lucas W. Davis, 2008. "Durable goods and residential demand for energy and water: evidence from a field trial," RAND Journal of Economics, RAND Corporation, vol. 39(2), pages 530-546.
    19. Hartman, Raymond S, 1988. "Self-Selection Bias in the Evaluation of Voluntary Energy Conservation Programs," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 448-458, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    2. Miller, Mark & Alberini, Anna, 2016. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," Energy Policy, Elsevier, vol. 97(C), pages 235-249.
    3. de Miguel, Carlos & Labandeira, Xavier & Löschel, Andreas, 2015. "Frontiers in the economics of energy efficiency," Energy Economics, Elsevier, vol. 52(S1), pages 1-4.
    4. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.

    More about this item

    Keywords

    Energy Efficiency; Household Behavior; Energy Efficiency Incentives; Electricity Usage; Home Energy Audit.;

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • H3 - Public Economics - - Fiscal Policies and Behavior of Economic Agents

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eth:wpswif:15-208. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/iwethch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.