IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2023-34.html
   My bibliography  Save this paper

Random Subspace Local Projections

Author

Listed:
  • Viet Hoang Dinh
  • Didier Nibbering
  • Benjamin Wong

Abstract

We show how random subspace methods can be adapted to estimating local projections with many controls. Random subspace methods have their roots in the machine learning literature and are implemented by averaging over regressions estimated over different combinations of subsets of these controls. We document three key results: (i) Our approach can successfully recover the impulse response function in a Monte Carlo exercise where we simulate data from a real business cycle model with fiscal foresight. (ii) Our results suggest that random subspace methods are more accurate than factor models if the underlying large data set has a factor structure similar to typical macroeconomic data sets such as FRED-MD. (iii) Our approach leads to differences in the estimated impulse response functions relative to standard methods when applied to two widely-studied empirical applications.

Suggested Citation

  • Viet Hoang Dinh & Didier Nibbering & Benjamin Wong, 2023. "Random Subspace Local Projections," CAMA Working Papers 2023-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2023-34
    as

    Download full text from publisher

    File URL: https://crawford.anu.edu.au/sites/default/files/2025-01/34_2023_dinh_nibbering_wong.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    2. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    3. A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2018. "A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High‐Dimensional Linear Regression Models," Econometrica, Econometric Society, vol. 86(4), pages 1479-1512, July.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. repec:cdl:ucsdec:qt1st3n7z7 is not listed on IDEAS
    6. Mark Gertler & Peter Karadi, 2015. "Monetary Policy Surprises, Credit Costs, and Economic Activity," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 44-76, January.
    7. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
    8. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    9. Valerie A. Ramey & Sarah Zubairy, 2018. "Government Spending Multipliers in Good Times and in Bad: Evidence from US Historical Data," Journal of Political Economy, University of Chicago Press, vol. 126(2), pages 850-901.
    10. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Paul & Lubik, Thomas A. & Matthes, Christian, 2024. "Averaging impulse responses using prediction pools," Journal of Monetary Economics, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    2. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    3. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2023. "Identification with External Instruments in Structural VARs," Journal of Monetary Economics, Elsevier, vol. 135(C), pages 1-19.
    4. Yoosoon Chang & Yongok Choi & Chang Sik Kim & J. Isaac Miller & Joon Y. Park, 2024. "Common Trends and Country Specific Heterogeneities in Long-Run World Energy Consumption," Working Papers No 01/2024, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    5. Max Breitenlechner & Martin Geiger & Mathias Klein, 2024. "The Fiscal Channel of Monetary Policy," Working Papers 2024-07, Faculty of Economics and Statistics, Universität Innsbruck.
    6. Isabel Gödl-Hanisch, 2023. "Bank Concentration and Monetary Policy Pass-Through," CESifo Working Paper Series 10378, CESifo.
    7. Hansen, Stephen & McMahon, Michael & Tong, Matthew, 2019. "The long-run information effect of central bank communication," Journal of Monetary Economics, Elsevier, vol. 108(C), pages 185-202.
    8. Alisdair McKay & Christian K. Wolf, 2023. "What Can Time‐Series Regressions Tell Us About Policy Counterfactuals?," Econometrica, Econometric Society, vol. 91(5), pages 1695-1725, September.
    9. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    10. Jörg Breitung & Ralf Brüggemann, 2023. "Projection Estimators for Structural Impulse Responses," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(6), pages 1320-1340, December.
    11. Mehdi El Herradi & Aurélien Leroy, 2020. "Monetary policy and the top one percent: Evidence from a century of modern economic history," Working Papers halshs-03080162, HAL.
    12. Metiu, Norbert & Prieto, Esteban, 2025. "Time-varying stock return correlation, news shocks, and business cycles," European Economic Review, Elsevier, vol. 172(C).
    13. Mario Alloza & Jesús Gonzalo & Carlos Sanz, 2025. "Dynamic Effects of Persistent Shocks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(4), pages 380-394, June.
    14. Yoosoon Chang & Fabio Gomez-Rodriguez & Christian Matthes, 2023. "The Influence of Fiscal and Monetary Policies on the Shape of the Yield Curve," CAMA Working Papers 2023-65, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Chen, Zhengyang & Valcarcel, Victor J., 2025. "Modeling inflation expectations in forward-looking interest rate and money growth rules," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 170, pages 1-21.
    16. Jordà, Òscar & Schularick, Moritz & Taylor, Alan M., 2020. "The effects of quasi-random monetary experiments," Journal of Monetary Economics, Elsevier, vol. 112(C), pages 22-40.
    17. Albrizio, Silvia & Choi, Sangyup & Furceri, Davide & Yoon, Chansik, 2020. "International bank lending channel of monetary policy," Journal of International Money and Finance, Elsevier, vol. 102(C).
    18. Arefeva, Alina & Arefyev, Nikolay, 2025. "Playing by the Taylor rules or sticking to Friedman’s policy: A new approach to monetary policy identification," Economic Modelling, Elsevier, vol. 143(C).
    19. Rüth, Sebastian K., 2020. "Shifts in monetary policy and exchange rate dynamics: Is Dornbusch's overshooting hypothesis intact, after all?," Journal of International Economics, Elsevier, vol. 126(C).
    20. Davide Debortoli & Mario Forni & Luca Gambetti & Luca Sala, 2020. "Asymmetric monetary policy tradeoffs," Economics Working Papers 1742, Department of Economics and Business, Universitat Pompeu Fabra, revised Sep 2023.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2023-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.