IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Skewed GARCH-in-Mean Model: An Application to U.S. Stock Returns

  • Pentti Saikkonen
  • Markku Lanne

In this paper we consider a GARCH-in-Mean (GARCH-M) model based on the so-called z distribution. This distribution is capable of modeling moderate skewness and kurtosis typically encountered in financial return series, and the need to allow for skewness can be readily tested. We apply the new GARCH-M model to study the relationship between risk and return in monthly postwar U.S. stock market data. Our results indicate the presence of conditional skewness in U.S. stock returns, and, in contrast to the previous literature, we show that a positive and significant relationship between return and risk can be uncovered, once an appropriate probability distribution is employed to allow for conditional skewness

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repec.org/esNASM04/up.9415.1075543256.pdf
Download Restriction: no

Paper provided by Econometric Society in its series Econometric Society 2004 North American Summer Meetings with number 469.

as
in new window

Length:
Date of creation: 11 Aug 2004
Date of revision:
Handle: RePEc:ecm:nasm04:469
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page: http://www.econometricsociety.org/pastmeetings.asp
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-30, August.
  2. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2003. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2003s-26, CIRANO.
  3. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
  4. Andersson, Jonas, 2001. "On the Normal Inverse Gaussian Stochastic Volatility Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 44-54, January.
  5. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  6. Hall, Robert E, 1988. "Intertemporal Substitution in Consumption," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 339-57, April.
  7. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
  8. Lundbergh, Stefan & Terasvirta, Timo, 2002. "Evaluating GARCH models," Journal of Econometrics, Elsevier, vol. 110(2), pages 417-435, October.
  9. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(01), pages 17-43, March.
  10. Peter Christoffersen & Steve Heston & Kris Jacobs, 2003. "Option Valuation with Conditional Skewness," CIRANO Working Papers 2003s-50, CIRANO.
  11. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-87, September.
  12. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  13. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, 06.
  14. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  15. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:469. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.