IDEAS home Printed from https://ideas.repec.org/p/mis/wpaper/20071102.html
   My bibliography  Save this paper

A Geostatistical Approach to Define Guidelines for Radon Prone Area Identification

Author

Listed:
  • Riccardo Borgoni
  • Piero Quatto
  • Giorgio Somà
  • Daniela de Bartolo

Abstract

Radon is a natural radioactive gas known to be the main contributor to natural background radiation exposure and the major leading cause of lung cancer second to smoking. Indoor radon concentration levels of 200 and 400 Bq/m3 are reference values suggested by the 90/143/Euratom recommendation, above which mitigation measures should be taken in new and old buildings, respectively, to reduce exposure to radon. Despite this international recommendation, Italy still does not have mandatory regulations or guidelines to deal with radon in dwellings. Monitoring surveys have been undertaken in a number of western European countries in order to assess the exposure of people to this radioactive gas and to identify radon prone areas. However, such campaigns provide concentration values in each single dwelling included in the sample, while it is often necessary to provide measures of the pollutant concentration which refer to sub-areas of the region under study. This requires a realignment of the spatial data from the level at which they are collected (points) to the level at which they are necessary (areas). This is known as change of support problem. In this paper, we propose a methodology based on geostatistical simulations in order to solve this problem and to identify radon prone areas which may be suggested for national guidelines.

Suggested Citation

  • Riccardo Borgoni & Piero Quatto & Giorgio Somà & Daniela de Bartolo, 2007. "A Geostatistical Approach to Define Guidelines for Radon Prone Area Identification," Working Papers 20071102, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica.
  • Handle: RePEc:mis:wpaper:20071102
    as

    Download full text from publisher

    File URL: http://www.statistica.unimib.it/utenti/WorkingPapers/WorkingPapers/20071102.pdf
    File Function: First version, November 2007
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Pentti Saikkonen & Markku Lanne, 2004. "A Skewed GARCH-in-Mean Model: An Application to U.S. Stock Returns," Econometric Society 2004 North American Summer Meetings 469, Econometric Society.
    3. Luc Bauwens & Sébastien Laurent, 2002. "A New Class of Multivariate skew Densities, with Application to GARCH Models," Computing in Economics and Finance 2002 5, Society for Computational Economics.
    4. Francesco Lisi, 2007. "Testing asymmetry in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 687-696.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Radon Prone Areas; kriging; geostatistical conditional simulation; change of support problem;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mis:wpaper:20071102. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matteo Pelagatti). General contact details of provider: http://edirc.repec.org/data/dsmibit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.