IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/2002194.html
   My bibliography  Save this paper

Sensitivity analysis of volatility: a new tool for risk management

Author

Listed:
  • Ceci, Vladimiro
  • Manganelli, Simone
  • Vecchiato, Walter

Abstract

The extension of GARCH models to the multivariate setting has been fraught with difficulties. In this paper, we suggest to work with univariate portfolio GARCH models. We show how the multivariate dimension of the portfolio allocation problem may be recovered from the univariate approach. The main tool we use is the "variance sensitivity analysis", which measures the change in the portfolio variance as a consequence of an infinitesimal change in the portfolio allocation. We derive the sensitivity of the univariate portfolio GARCH variance to the portfolio weights, by analytically computing the derivatives of the estimated GARCH variance with respect to these weights. We suggest a new and simple method to estimate full variance-covariance matrices of portfolio assets. An application to real data portfolios shows how to implement our methodology and compares its performance against that of selected popular alternatives. JEL Classification: C32, C53, G15

Suggested Citation

  • Ceci, Vladimiro & Manganelli, Simone & Vecchiato, Walter, 2002. "Sensitivity analysis of volatility: a new tool for risk management," Working Paper Series 194, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:2002194
    Note: 196912
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp194.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    4. West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993. "A utility-based comparison of some models of exchange rate volatility," Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
    5. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    6. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    7. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    9. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    10. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    11. Engle, Robert F, 2000. "Dynamic Conditional Correlation - A Simple Class of Multivariate GARCH Models," University of California at San Diego, Economics Working Paper Series qt56j4143f, Department of Economics, UC San Diego.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chrétien, Stéphane & Ortega, Juan-Pablo, 2014. "Multivariate GARCH estimation via a Bregman-proximal trust-region method," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 210-236.
    2. Panayiotis F. Diamandis & Anastassios A. Drakos & Georgios P. Kouretas & Leonidas P. Zarangas, 2012. "Asset allocation in the Athens stock exchange: a variance sensitivity analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 17(2), pages 167-181, April.
    3. St'ephane Chr'etien & Juan-Pablo Ortega, 2011. "Multivariate GARCH estimation via a Bregman-proximal trust-region method," Papers 1101.5475, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manganelli, Simone & Ceci, Vladimiro & Vecchiato, Walter, 2002. "Sensitivity analysis of volatility: a new tool for risk management," Working Paper Series 0194, European Central Bank.
    2. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    3. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Chrétien, Stéphane & Ortega, Juan-Pablo, 2014. "Multivariate GARCH estimation via a Bregman-proximal trust-region method," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 210-236.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    6. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    7. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    8. David McMillan & Isabel Ruiz & Alan Speight, 2010. "Correlations and spillovers among three euro rates: evidence using realised variance," The European Journal of Finance, Taylor & Francis Journals, vol. 16(8), pages 753-767.
    9. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    10. Panayiotis F. Diamandis & Anastassios A. Drakos & Georgios P. Kouretas & Leonidas P. Zarangas, 2012. "Asset allocation in the Athens stock exchange: a variance sensitivity analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 17(2), pages 167-181, April.
    11. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    12. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    13. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
    14. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Hlouskova, Jaroslava & Schmidheiny, Kurt & Wagner, Martin, 2009. "Multistep predictions for multivariate GARCH models: Closed form solution and the value for portfolio management," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 330-336, March.
    16. Schmidt, Rafael & Schmieder, Christian, 2009. "Modelling dynamic portfolio risk using risk drivers of elliptical processes," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 229-244, April.
    17. Fernandes, Marcelo & de Sa Mota, Bernardo & Rocha, Guilherme, 2005. "A multivariate conditional autoregressive range model," Economics Letters, Elsevier, vol. 86(3), pages 435-440, March.
    18. St'ephane Chr'etien & Juan-Pablo Ortega, 2011. "Multivariate GARCH estimation via a Bregman-proximal trust-region method," Papers 1101.5475, arXiv.org.
    19. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    20. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.

    More about this item

    Keywords

    Dynamic Correlations; GARCH; risk management; Sensitivity Analysis;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:2002194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.