IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-90811.html
   My bibliography  Save this paper

On Clean Technology Diffusion Mechanisms

Author

Listed:
  • Grégoire Garsous

Abstract

Developing countries argue that because of their historical responsibility, developed countries should be the ones to bear the costs of climate change mitigation. This paper revisits this argument throughout the analysis of clean technology diffusion between developed and developing countries in the power generation sector. Our model shows that developed countries could decide to develop clean technologies on their own and still achieve substantial results in climate change mitigation. However, this is so if both the clean innovation rate in developed countries is high enough and developing countries own adequate capacities to absorb these innovations.

Suggested Citation

  • Grégoire Garsous, 2011. "On Clean Technology Diffusion Mechanisms," Working Papers ECARES ECARES 2011-013, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/90811
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/90811/6/2011-013-GARSOUS-onclean.pdf
    File Function: 2011-013-GARSOUS-onclean
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Howitt, Peter & Mayer-Foulkes, David, 2005. "R&D, Implementation, and Stagnation: A Schumpeterian Theory of Convergence Clubs," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(1), pages 147-177, February.
    3. Philippe Aghion & Peter Howitt, 2009. "The Economics of Growth," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012634, December.
    4. Daron Acemoglu & Philippe Aghion & Fabrizio Zilibotti, 2006. "Distance to Frontier, Selection, and Economic Growth," Journal of the European Economic Association, MIT Press, vol. 4(1), pages 37-74, March.
    5. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    6. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    7. Philippe Aghion & Reinhilde Veugelers & David Hemous, 2009. "No Green Growth Without Innovation," Policy Briefs 353, Bruegel.
    8. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    9. Fay, Marianne & Iimi, Atsushi & Perrissin-Fabert, Baptiste, 2010. "Financing greener and climate-resilient infrastructure in developing countries - challenges and opportunities," EIB Papers 7/2010, European Investment Bank, Economics Department.
    10. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
    11. Carraro, Carlo & Gerlagh, Reyer & Zwaan, Bob van der, 2003. "Endogenous technical change in environmental macroeconomics," Resource and Energy Economics, Elsevier, vol. 25(1), pages 1-10, February.
    12. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    13. Philippe Aghion & Reinhilde Veugelers & Clément Serre, 2009. "Cold Start for the Green Innovation Machine," Policy Contributions 354, Bruegel.
    14. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Estache, 2012. "What Policies to Green Infrastructure Service Delivery Entail," Working Papers ECARES ECARES 2012-013, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
    4. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    5. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    6. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    7. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    8. Keiichi Kishi, 2015. "Dynamic analysis of wage inequality and creative destruction," Journal of Economics, Springer, vol. 115(1), pages 1-23, May.
    9. Martin Beraja & David Y Yang & Noam Yuchtman, 2023. "Data-intensive Innovation and the State: Evidence from AI Firms in China," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1701-1723.
    10. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    11. Karanfil, Fatih & Yeddir-Tamsamani, Yasser, 2010. "Is technological change biased toward energy? A multi-sectoral analysis for the French economy," Energy Policy, Elsevier, vol. 38(4), pages 1842-1850, April.
    12. Hui Zhang & Haiqian Ke, 2022. "Spatial Spillover Effects of Directed Technical Change on Urban Carbon Intensity, Based on 283 Cities in China from 2008 to 2019," IJERPH, MDPI, vol. 19(3), pages 1-19, February.
    13. Diana Carolina León Torres, 2019. "Un cuento de David y Goliat: Comercio, Tecnología y Crisis Ambiental," Documentos CEDE 17434, Universidad de los Andes, Facultad de Economía, CEDE.
    14. Julián D. Gómez, 2018. "¿Qué determina la adopción de tecnologías para la generación de energías renovables entre países?," Documentos CEDE 17132, Universidad de los Andes, Facultad de Economía, CEDE.
    15. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
    16. Michael Grubb & Jean-Francois Mercure & Pablo Salas & Rutger-Jan Lange & Ida Sognnaes, 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Working Papers EPRG 1808, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. David Hémous & Morten Olsen, 2021. "Directed Technical Change in Labor and Environmental Economics," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 571-597, August.
    18. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    19. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    20. John Boyce, "undated". "Biased Technological Change and the Relative Abundance of Natural Resources," Working Papers 2013-04, Department of Economics, University of Calgary.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/90811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/arulbbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.