IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1377.html
   My bibliography  Save this paper

Best Response Equivalence

Author

Listed:

Abstract

Two games are best-response equivalent if they have the same best-response correspondence. We provide a characterization of when two games are best-response equivalent. The characterizations exploit a dual relationship between payoff differences and beliefs. Some "potential game" arguments (cf. Monderer and Shapley, 1996, Games. Econ. Behav. 14, 124-143) rely only on the property that potential games are best-response equivalent to identical interest games. Our results show that a large class of games are best-response equivalent to identical interest games, but are not potential games. Thus we show how some existing potential game arguments can be extended.

Suggested Citation

  • Morris, Stephen Morris & Takashi Ui, 2002. "Best Response Equivalence," Cowles Foundation Discussion Papers 1377, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1377
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d13/d1377.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ui, Takashi, 2001. "Robust Equilibria of Potential Games," Econometrica, Econometric Society, vol. 69(5), pages 1373-1380, September.
    2. Ui, Takashi, 2000. "A Shapley Value Representation of Potential Games," Games and Economic Behavior, Elsevier, vol. 31(1), pages 121-135, April.
    3. Jean-François Mertens, 2004. "Ordinality in non cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(3), pages 387-430, June.
    4. Aner Sela, 1999. "Fictitious play in `one-against-all' multi-player games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 14(3), pages 635-651.
    5. Morris, Stephen & Ui, Takashi, 2005. "Generalized potentials and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 124(1), pages 45-78, September.
    6. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(2), pages 235-260.
    7. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
    8. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    9. Voorneveld, Mark, 2000. "Best-response potential games," Economics Letters, Elsevier, vol. 66(3), pages 289-295, March.
    10. Anderson, Simon P. & Goeree, Jacob K. & Holt, Charles A., 2001. "Minimum-Effort Coordination Games: Stochastic Potential and Logit Equilibrium," Games and Economic Behavior, Elsevier, vol. 34(2), pages 177-199, February.
    11. P. Dubey & O. Haimanko & A. Zapechelnyuk, 2002. "Strategic Substitutes and Potential Games," Department of Economics Working Papers 02-02, Stony Brook University, Department of Economics.
    12. Maskin, Eric & Tirole, Jean, 2001. "Markov Perfect Equilibrium: I. Observable Actions," Journal of Economic Theory, Elsevier, vol. 100(2), pages 191-219, October.
    13. Abraham Neyman, 1997. "Correlated Equilibrium and Potential Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(2), pages 223-227.
    14. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    15. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Staudigl, Mathias, 2011. "Potential games in volatile environments," Games and Economic Behavior, Elsevier, vol. 72(1), pages 271-287, May.
    2. Morris, Stephen & Ui, Takashi, 2005. "Generalized potentials and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 124(1), pages 45-78, September.
    3. Candogan, Ozan & Ozdaglar, Asuman & Parrilo, Pablo A., 2013. "Dynamics in near-potential games," Games and Economic Behavior, Elsevier, vol. 82(C), pages 66-90.
    4. Jeremy T. Fox & Natalia Lazzati, 2012. "Identification of Potential Games and Demand Models for Bundles," NBER Working Papers 18155, National Bureau of Economic Research, Inc.
    5. Alós-Ferrer, Carlos & Netzer, Nick, 2010. "The logit-response dynamics," Games and Economic Behavior, Elsevier, vol. 68(2), pages 413-427, March.
    6. repec:ebl:ecbull:v:3:y:2007:i:19:p:1-8 is not listed on IDEAS
    7. Oyama, Daisuke & Tercieux, Olivier, 2009. "Iterated potential and robustness of equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1726-1769, July.
    8. Sandholm, William H., 2007. "Pigouvian pricing and stochastic evolutionary implementation," Journal of Economic Theory, Elsevier, vol. 132(1), pages 367-382, January.
    9. Okada, Daijiro & Tercieux, Olivier, 2012. "Log-linear dynamics and local potential," Journal of Economic Theory, Elsevier, vol. 147(3), pages 1140-1164.
    10. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    11. Marden, Jason R. & Shamma, Jeff S., 2012. "Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation," Games and Economic Behavior, Elsevier, vol. 75(2), pages 788-808.
    12. Ianni, Antonella, 2001. "Learning correlated equilibria in population games," Mathematical Social Sciences, Elsevier, vol. 42(3), pages 271-294, November.
    13. Jeremy Fox & Natalia Lazzati, 2013. "Identification of discrete choice models for bundles and binary games," CeMMAP working papers 04/13, Institute for Fiscal Studies.
    14. D. Dragone & L. Lambertini & A. Palestini, 2008. "A Class of Best-Response Potential Games," Working Papers 635, Dipartimento Scienze Economiche, Universita' di Bologna.
    15. Szabó, György & Hódsági, Kristóf, 2016. "The role of mixed strategies in spatial evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 198-206.
    16. Nora, Vladyslav & Uno, Hiroshi, 2014. "Saddle functions and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 150(C), pages 866-877.
    17. Ianni, Antonella, 2000. "Learning correlated equilibria in potential games," Discussion Paper Series In Economics And Econometrics 0012, Economics Division, School of Social Sciences, University of Southampton.
    18. repec:hal:pseose:halshs-00754591 is not listed on IDEAS
    19. Lina Mallozzi, 2013. "An application of optimization theory to the study of equilibria for games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 523-539, September.
    20. Daisuke Oyama & Satoru Takahashi, 2009. "Monotone and local potential maximizers in symmetric 3x3 supermodular games," Economics Bulletin, AccessEcon, vol. 29(3), pages 2123-2135.
    21. Sawa, Ryoji, 2014. "Coalitional stochastic stability in games, networks and markets," Games and Economic Behavior, Elsevier, vol. 88(C), pages 90-111.
    22. Opolot, Daniel & Azomahou, Theophile, 2012. "Learning and convergence in networks," MERIT Working Papers 2012-074, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    More about this item

    Keywords

    Best response equivalence; Duality; Farkas' Lemma; Potential games;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.