IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws060402.html
   My bibliography  Save this paper

Using auxiliary residuals to detect conditional heteroscedasticity in inflation

Author

Listed:
  • Broto, Carmen
  • Ruiz, Esther

Abstract

In this paper we consider a model with stochastic trend, seasonal and transitory components with the disturbances of the trend and transitory disturbances specified as QGARCH models. We propose to use the differences between the autocorrelations of squares and the squared autocorrelations of the auxiliary residuals to identify which component is heteroscedastic. The finite sample performance of these differences is analysed by means of Monte Carlo experiments. We show that conditional heteroscedasticity truly present in the data can be rejected when looking at the correlations of observations or of standardized residuals while the autocorrelations of auxiliary residuals allow us to detect adequately whether there is heteroscedasticity and which is the heteroscedastic component. We also analyse the finite sample behaviour of a QML estimator of the parameters of the model. Finally, we use auxiliary residuals to detect conditional heteroscedasticity in monthly series of inflation of eight OECD countries. We conclude that, for most of these series, the conditional heteroscedasticity affects the transitory component while the long-run and seasonal components are homoscedastic. Furthermore, in the countries where there is a significant relationship between the volatility and the level of inflation, this relation is positive, supporting the Friedman hypothesis.

Suggested Citation

  • Broto, Carmen & Ruiz, Esther, 2006. "Using auxiliary residuals to detect conditional heteroscedasticity in inflation," DES - Working Papers. Statistics and Econometrics. WS ws060402, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws060402
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/233/ws060402.pdf?sequence=1
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state-space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws060402. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.