IDEAS home Printed from https://ideas.repec.org/p/col/000089/008735.html
   My bibliography  Save this paper

Programación semidefinida aplicada a problemas de cantidad económica de pedido

Author

Listed:
  • Jenny Carolina Saldaña Cortés

    ()

Abstract

Desde hace muchos años los modelos (S, s) han sido una herramienta importante de la teoría económica aplicada. Estos son modelos de propósito general de toma de decisiones económicas en situaciones donde se tienen dos características definidas: una variable de estado que afecta los pagos de flujo y los costos fijos que ejercen control sobre la variable de estado. El origen de este tipo de problemas son los modelos de control de inventario los cuales tienen como principal objetivo encontrar la mejor manera de equilibrar los costos de explotación del inventario, los costos asociados con el funcionamiento de inventario, y los costos asociados con la recepción y el procesamiento de órdenes. La solución computacional de este tipo problemas aumenta su nivel de complejidad si se le incluyen variables binarias con la finalidad de simular economías de escala.Tradicionalmente la optimización ha sido un fundamento básico de los economistasquienes necesariamente tienen que recurrir a modelos matemáticos para representar sistemas técnico-económicos que se comporten bajo teorías de racionalidad económica (maximizar beneficios socio-económicos), ya sea a nivel microeconómico o a nivel macroeconómico. En la medida que los algoritmos matemáticos de optimización se han vuelto más poderosos los modelos económicos reflejan más apropiadamente los sistemas técnico-económicos. Sin embargo, los problemas binarios siguen siendo un tema de investigación debido a los recursos computacionales que requieren para su solución. Este no es un problema superado.Este trabajo es un aporte de investigación en dirección a encontrar nuevos caminospara resolver problemas básicos tipo (S, s), como lo es de la cantidad económica depedido (EOQ)1 de una manera eficaz. Para tal fin se proponen métodos alternativos de relajación semidefinida de programas dinámicos con variables binarias. Con el objeto de ofrecer, una aproximación cuantitativa, como caso ilustrativo, los modelos desarrollados se aplican a datos procedentes de una firma representativa del sector cerámico colombiano.

Suggested Citation

  • Jenny Carolina Saldaña Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," DOCUMENTOS CEDE 008735, UNIVERSIDAD DE LOS ANDES-CEDE.
  • Handle: RePEc:col:000089:008735
    as

    Download full text from publisher

    File URL: http://economia.uniandes.edu.co/publicaciones/dcede2011-10.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, pages 490-502.
    2. Christopher Suerie & Hartmut Stadtler, 2003. "The Capacitated Lot-Sizing Problem with Linked Lot Sizes," Management Science, INFORMS, pages 1039-1054.
    3. William W. Trigeiro & L. Joseph Thomas & John O. McClain, 1989. "Capacitated Lot Sizing with Setup Times," Management Science, INFORMS, pages 353-366.
    4. Bertazzi, Luca, 2003. "Rounding off the optimal solution of the economic lot size problem," International Journal of Production Economics, Elsevier, vol. 81(1), pages 385-392, January.
    5. Gaetan Belvaux & Laurence A. Wolsey, 2001. "Modelling Practical Lot-Sizing Problems as Mixed-Integer Programs," Management Science, INFORMS, pages 993-1007.
    6. Suerie, Christopher & Stadtler, Hartmut, 2003. "The Capacitated lot-sizing problem with linked lot sizes," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 20206, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, pages 490-502.
    8. Andrew Caplin & John Leahy, 2010. "Economic Theory and the World of Practice: A Celebration of the ( S , s ) Model," Journal of Economic Perspectives, American Economic Association, vol. 24(1), pages 183-202, Winter.
    9. Kenneth R. Baker & Paul Dixon & Michael J. Magazine & Edward A. Silver, 1978. "An Algorithm for the Dynamic Lot-Size Problem with Time-Varying Production Capacity Constraints," Management Science, INFORMS, pages 1710-1720.
    10. Lodree, Emmett Jr., 2007. "EOQ revisited: The case of unequal and integral order quantities," International Journal of Production Economics, Elsevier, vol. 105(2), pages 580-590, February.
    11. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, pages 1-18.
    12. Shirley, Chad & Winston, Clifford, 2004. "Firm inventory behavior and the returns from highway infrastructure investments," Journal of Urban Economics, Elsevier, vol. 55(2), pages 398-415, March.
    13. Stadtler, Hartmut, 1996. "Mixed integer programming model formulations for dynamic multi-item multi-level capacitated lotsizing," European Journal of Operational Research, Elsevier, vol. 94(3), pages 561-581, November.
    14. Jianzhong Zhang & Nae-Heon Kim & L. Lasdon, 1985. "An Improved Successive Linear Programming Algorithm," Management Science, INFORMS, pages 1312-1331.
    15. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, pages 669-679.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    control de inventarios; programación semidefinida; cantidad económica;

    JEL classification:

    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000089:008735. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Universidad De Los Andes-Cede). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.