IDEAS home Printed from
   My bibliography  Save this paper

Repetition and cooperation: A model of finitely repeated games with objective ambiguity


  • Demeze-Jouatsa, Ghislain-Herman

    (Center for Mathematical Economics, Bielefeld University)


In this paper, we present a model of finitely repeated games in which players can strategically make use of objective ambiguity. In each round of a finite rep- etition of a finite stage-game, in addition to the classic pure and mixed actions, players can employ objectively ambiguous actions by using imprecise probabilistic devices such as Ellsberg urns to conceal their intentions. We find that adding an infinitesimal level of ambiguity can be enough to approximate collusive payoffs via subgame perfect equi- librium strategies of the finitely repeated game. Our main theorem states that if each player has many continuation equilibrium payoffs in ambiguous actions, any feasible pay- off vector of the original stage-game that dominates the mixed strategy maxmin payoff vector is (ex-ante and ex-post) approachable by means of subgame perfect equilibrium strategies of the finitely repeated game with discounting. Our condition is also necessary.

Suggested Citation

  • Demeze-Jouatsa, Ghislain-Herman, 2018. "Repetition and cooperation: A model of finitely repeated games with objective ambiguity," Center for Mathematical Economics Working Papers 585, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:585

    Download full text from publisher

    File URL:
    File Function: First Version, 2018
    Download Restriction: no

    References listed on IDEAS

    1. Kreps, David M. & Milgrom, Paul & Roberts, John & Wilson, Robert, 1982. "Rational cooperation in the finitely repeated prisoners' dilemma," Journal of Economic Theory, Elsevier, vol. 27(2), pages 245-252, August.
    2. Robert J. Aumann, 1995. "Repeated Games with Incomplete Information," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011476, December.
    3. Frank Riedel, 2017. "Uncertain Acts in Games," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 34(4), pages 275-292, December.
    4. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    5. Wen, Quan, 1994. "The "Folk Theorem" for Repeated Games with Complete Information," Econometrica, Econometric Society, vol. 62(4), pages 949-954, July.
    6. Aumann, Robert J. & Sorin, Sylvain, 1989. "Cooperation and bounded recall," Games and Economic Behavior, Elsevier, vol. 1(1), pages 5-39, March.
    7. Joseph Greenberg, 2000. "The Right to Remain Silent," Theory and Decision, Springer, vol. 48(2), pages 193-204, March.
    8. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    9. Sekiguchi, Tadashi, 2002. "Existence of nontrivial equilibria in repeated games with imperfect private monitoring," Games and Economic Behavior, Elsevier, vol. 40(2), pages 299-321, August.
    10. Sibly, Hugh & Tisdell, John, 2018. "Cooperation and turn taking in finitely-repeated prisoners' dilemmas: An experimental analysis," Journal of Economic Psychology, Elsevier, vol. 64(C), pages 49-56.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Objective Ambiguity; Ambiguity Aversion; Finitely Repeated Games; Subgame Perfect Equilibrium; Ellsberg Urns; Ellsberg Strategies;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:585. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bettina Weingarten). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.