IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/499.html
   My bibliography  Save this paper

Aggregating infinitely many probability measures

Author

Listed:
  • Herzberg, Frederik

    (Center for Mathematical Economics, Bielefeld University)

Abstract

The problem of how to rationally aggregate probability measures occurs in particular (i) when a group of agents, each holding probabilistic beliefs, needs to rationalise a collective decision on the basis of a single ‘aggregate belief system’ and (ii) when an individual whose belief system is compatible with several (possibly infinitely many) probability measures wishes to evaluate her options on the basis of a single aggregate prior via classical expected utility theory (a psychologically plausible account of individual decisions). We investigate this problem by first recalling some negative results from preference and judgment aggregation theory which show that the aggregate of several probability measures should not be conceived as the probability measure induced by the aggregate of the corresponding expected-utility preferences. We describe how McConway’s (Journal of the American Statistical Association, vol. 76, no. 374, pp. 410– 414, 1981) theory of probabilistic opinion pooling can be generalised to cover the case of the aggregation of infinite profiles of finitely-additive probability measures, too; we prove the existence of aggregation functionals satisfying responsiveness axioms à la McConway plus additional desiderata even for infinite electorates. On the basis of the theory of propositional-attitude aggregation, we argue that this is the most natural aggregation theory for probability measures. Our aggregation functionals for the case of infinite electorates are neither oligarchic nor integral-based and satisfy (at least) a weak anonymity condition. The delicate set-theoretic status of integral-based aggregation functionals for infinite electorates is discussed.

Suggested Citation

  • Herzberg, Frederik, 2014. "Aggregating infinitely many probability measures," Center for Mathematical Economics Working Papers 499, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:499
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2675331/2901866
    File Function: First Version, 2014
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frank Riedel, 2009. "Optimal Stopping With Multiple Priors," Econometrica, Econometric Society, vol. 77(3), pages 857-908, May.
    2. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    3. Simone Cerreia-Vioglio & Paolo Ghirardato & Fabio Maccheroni & Massimo Marinacci & Marciano Siniscalchi, 2011. "Rational preferences under ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(2), pages 341-375, October.
    4. Herzberg, Frederik & Eckert, Daniel, 2017. "Impossibility results for infinite-electorate abstract aggregation rules," Center for Mathematical Economics Working Papers 427, Center for Mathematical Economics, Bielefeld University.
    5. Herzberg, Frederik & Eckert, Daniel, 2012. "The model-theoretic approach to aggregation: Impossibility results for finite and infinite electorates," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 41-47.
    6. Herzberg, Frederik, 2014. "Aggregation of Monotonic Bernoullian Archimedean preferences: Arrovian impossibility results," Center for Mathematical Economics Working Papers 488, Center for Mathematical Economics, Bielefeld University.
    7. Christian Klamler & Daniel Eckert, 2009. "A simple ultrafilter proof for an impossibility theorem in judgment aggregation," Economics Bulletin, AccessEcon, vol. 29(1), pages 319-327.
    8. Lauwers, Luc & Van Liedekerke, Luc, 1995. "Ultraproducts and aggregation," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 217-237.
    9. Campbell, Donald E., 1990. "Intergenerational social choice without the Pareto principle," Journal of Economic Theory, Elsevier, vol. 50(2), pages 414-423, April.
    10. Hylland, Aanund & Zeckhauser, Richard J, 1979. "The Impossibility of Bayesian Group Decision Making with Separate Aggregation of Beliefs and Values," Econometrica, Econometric Society, vol. 47(6), pages 1321-1336, November.
    11. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    12. Mark Fey, 2004. "May’s Theorem with an infinite population," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(2), pages 275-293, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    probabilistic opinion pooling; general aggregation theory; Richard Bradley; multiple priors; Arrow’s impossibility theorem; Bayesian epistemology; society of mind; finite anonymity; ultrafilter; measure problem; non-standard analysis;

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:499. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bettina Weingarten). General contact details of provider: http://edirc.repec.org/data/imbiede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.