IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Optimal Stopping With Multiple Priors

  • Frank Riedel

We develop a theory of optimal stopping under Knightian uncertainty. A suitable martingale theory for multiple priors is derived that extends the classical dynamic programming or Snell envelope approach to multiple priors. We relate the multiple prior theory to the classical setup via a minimax theorem. In a multiple prior version of the classical model of independent and identically distributed random variables, we discuss several examples from microeconomics, operation research, and finance. For monotone payoffs, the worst-case prior can be identified quite easily with the help of stochastic dominance arguments. For more complex payoff structures like barrier options, model ambiguity leads to stochastic changes in the worst-case beliefs. Copyright 2009 The Econometric Society.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.3982/ECTA7594
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Econometric Society in its journal Econometrica.

Volume (Year): 77 (2009)
Issue (Month): 3 (05)
Pages: 857-908

as
in new window

Handle: RePEc:ecm:emetrp:v:77:y:2009:i:3:p:857-908
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page: http://www.econometricsociety.org/
Email:


More information through EDIRC

Order Information: Web: https://www.econometricsociety.org/publications/econometrica/access/ordering-back-issues Email:


No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:77:y:2009:i:3:p:857-908. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.