IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0703850.html
   My bibliography  Save this paper

Minimizing the Probability of Lifetime Ruin under Borrowing Constraints

Author

Listed:
  • Erhan Bayraktar
  • Virginia R. Young

Abstract

We determine the optimal investment strategy of an individual who targets a given rate of consumption and who seeks to minimize the probability of going bankrupt before she dies, also known as {\it lifetime ruin}. We impose two types of borrowing constraints: First, we do not allow the individual to borrow money to invest in the risky asset nor to sell the risky asset short. However, the latter is not a real restriction because in the unconstrained case, the individual does not sell the risky asset short. Second, we allow the individual to borrow money but only at a rate that is higher than the rate earned on the riskless asset. We consider two forms of the consumption function: (1) The individual consumes at a constant (real) dollar rate, and (2) the individual consumes a constant proportion of her wealth. The first is arguably more realistic, but the second is closely connected with Merton's model of optimal consumption and investment under power utility. We demonstrate that connection in this paper, as well as include a numerical example to illustrate our results.

Suggested Citation

  • Erhan Bayraktar & Virginia R. Young, 2007. "Minimizing the Probability of Lifetime Ruin under Borrowing Constraints," Papers math/0703850, arXiv.org.
  • Handle: RePEc:arx:papers:math/0703850
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0703850
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    2. J. Dhaene & S. Vanduffel & M. J. Goovaerts & R. Kaas & D. Vyncke, 2005. "Comonotonic Approximations for Optimal Portfolio Selection Problems," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 253-300.
    3. Milevsky, Moshe Arye & Ho, Kwok & Robinson, Chris, 1997. "Asset Allocation via the Conditional First Exit Time or How to Avoid Outliving Your Money," Review of Quantitative Finance and Accounting, Springer, vol. 9(1), pages 53-70, July.
    4. Olivieri, Annamaria & Pitacco, Ermanno, 2003. "Solvency requirements for pension annuities," Journal of Pension Economics and Finance, Cambridge University Press, vol. 2(02), pages 127-157, July.
    5. Hipp, Christian & Taksar, Michael, 2000. "Stochastic control for optimal new business," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 185-192, May.
    6. Vanduffel, Steven & Dhaene, Jan & Goovaerts, Marc, 2005. "On the evaluation of plans," Journal of Pension Economics and Finance, Cambridge University Press, vol. 4(01), pages 17-30, March.
    7. Hyeng Keun Koo, 1998. "Consumption and Portfolio Selection with Labor Income: A Continuous Time Approach," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 49-65.
    8. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    9. Moshe A. Milevsky & Kristen S. Moore & Virginia R. Young, 2006. "Asset Allocation And Annuity-Purchase Strategies To Minimize The Probability Of Financial Ruin," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 647-671.
    10. Duffie, Darrell & Fleming, Wendell & Soner, H. Mete & Zariphopoulou, Thaleia, 1997. "Hedging in incomplete markets with HARA utility," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 753-782, May.
    11. Sid Browne, 1999. "Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark," Finance and Stochastics, Springer, vol. 3(3), pages 275-294.
    12. Darrell Duffie & Thaleia Zariphopoulou, 1993. "Optimal Investment With Undiversifiable Income Risk," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 135-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayraktar, Erhan & Young, Virginia R., 2008. "Mutual fund theorems when minimizing the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(2), pages 69-78, June.
    2. Haluk Yener, 2015. "Maximizing survival, growth and goal reaching under borrowing constraints," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 2053-2065, December.
    3. Chen, Xinfu & Landriault, David & Li, Bin & Li, Dongchen, 2015. "On minimizing drawdown risks of lifetime investments," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 46-54.
    4. Bayraktar, Erhan & Young, Virginia R., 2008. "Maximizing utility of consumption subject to a constraint on the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(4), pages 204-212, December.
    5. Bayraktar, Erhan & Hu, Xueying & Young, Virginia R., 2011. "Minimizing the probability of lifetime ruin under stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 194-206, September.
    6. Cohen, Asaf & Young, Virginia R., 2016. "Minimizing lifetime poverty with a penalty for bankruptcy," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 156-167.
    7. Erhan Bayraktar & David Promislow & Virginia Young, 2014. "Purchasing Term Life Insurance to Reach a Bequest Goal while Consuming," Papers 1412.2262, arXiv.org, revised Feb 2016.
    8. Erhan Bayraktar & Asaf Cohen, 2015. "Risk Sensitive Control of the Lifetime Ruin Problem," Papers 1503.05769, arXiv.org, revised Jul 2016.
    9. Erhan Bayraktar & Yuchong Zhang, 2014. "Stochastic Perron's Method for the Probability of lifetime ruin problem under transaction costs," Papers 1404.7406, arXiv.org, revised Nov 2014.
    10. Claude Bergeron, 2013. "Dividend growth, stock valuation, and long-run risk," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 37(4), pages 547-559, October.
    11. Arash Fahim & Lingjiong Zhu, 2015. "Optimal Investment in a Dual Risk Model," Papers 1510.04924, arXiv.org.
    12. Erhan Bayraktar & Yuchong Zhang, 2014. "Minimizing the Probability of Lifetime Ruin Under Ambiguity Aversion," Papers 1402.1809, arXiv.org, revised Nov 2014.
    13. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2015. "Minimizing the expected lifetime spent in drawdown under proportional consumption," Finance Research Letters, Elsevier, vol. 15(C), pages 106-114.
    14. Erhan Bayraktar & Virginia Young, 2011. "Proving regularity of the minimal probability of ruin via a game of stopping and control," Finance and Stochastics, Springer, vol. 15(4), pages 785-818, December.
    15. Bayraktar, Erhan & Young, Virginia R., 2009. "Minimizing the lifetime shortfall or shortfall at death," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 447-458, June.
    16. Azcue, Pablo & Muler, Nora, 2009. "Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 26-34, February.
    17. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    18. Asaf Cohen & Virginia R. Young, 2015. "Minimizing Lifetime Poverty with a Penalty for Bankruptcy," Papers 1509.01694, arXiv.org.
    19. Wang, Ting & Young, Virginia R., 2012. "Optimal commutable annuities to minimize the probability of lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 200-216.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0703850. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.