IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Minimizing the probability of lifetime ruin under borrowing constraints

  • Bayraktar, Erhan
  • Young, Virginia R.

We determine the optimal investment strategy of an individual who targets a given rate of consumption and who seeks to minimize the probability of going bankrupt before she dies, also known as {\it lifetime ruin}. We impose two types of borrowing constraints: First, we do not allow the individual to borrow money to invest in the risky asset nor to sell the risky asset short. However, the latter is not a real restriction because in the unconstrained case, the individual does not sell the risky asset short. Second, we allow the individual to borrow money but only at a rate that is higher than the rate earned on the riskless asset. We consider two forms of the consumption function: (1) The individual consumes at a constant (real) dollar rate, and (2) the individual consumes a constant proportion of her wealth. The first is arguably more realistic, but the second is closely connected with Merton's model of optimal consumption and investment under power utility. We demonstrate that connection in this paper, as well as include a numerical example to illustrate our results.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V8N-4MFJT54-2/2/06c824cfaa331774c5b1ef197afc6252
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

Volume (Year): 41 (2007)
Issue (Month): 1 (July)
Pages: 196-221

as
in new window

Handle: RePEc:eee:insuma:v:41:y:2007:i:1:p:196-221
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505554

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Milevsky, Moshe Arye & Ho, Kwok & Robinson, Chris, 1997. " Asset Allocation via the Conditional First Exit Time or How to Avoid Outliving Your Money," Review of Quantitative Finance and Accounting, Springer, vol. 9(1), pages 53-70, July.
  2. J. Dhaene & S. Vanduffel & M. J. Goovaerts & R. Kaas & D. Vyncke, 2005. "Comonotonic Approximations for Optimal Portfolio Selection Problems," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 253-300.
  3. Duffie, Darrell & Fleming, Wendell & Soner, H. Mete & Zariphopoulou, Thaleia, 1997. "Hedging in incomplete markets with HARA utility," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 753-782, May.
  4. Olivieri, Annamaria & Pitacco, Ermanno, 2003. "Solvency requirements for pension annuities," Journal of Pension Economics and Finance, Cambridge University Press, vol. 2(02), pages 127-157, July.
  5. Moshe A. Milevsky & Kristen S. Moore & Virginia R. Young, 2006. "Asset Allocation And Annuity-Purchase Strategies To Minimize The Probability Of Financial Ruin," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 647-671.
  6. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
  7. Hyeng Keun Koo, 1998. "Consumption and Portfolio Selection with Labor Income: A Continuous Time Approach," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 49-65.
  8. Hipp, Christian & Taksar, Michael, 2000. "Stochastic control for optimal new business," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 185-192, May.
  9. Sid Browne, 1999. "Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark," Finance and Stochastics, Springer, vol. 3(3), pages 275-294.
  10. Darrell Duffie & Thaleia Zariphopoulou, 1993. "Optimal Investment With Undiversifiable Income Risk," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 135-148.
  11. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:41:y:2007:i:1:p:196-221. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.