IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v15y2011i4p785-818.html
   My bibliography  Save this article

Proving regularity of the minimal probability of ruin via a game of stopping and control

Author

Listed:
  • Erhan Bayraktar
  • Virginia Young

Abstract

We reveal an interesting convex duality relationship between two problems: (a) minimizing the probability of lifetime ruin when the rate of consumption is stochastic and when the individual can invest in a Black-Scholes financial market; (b) a controller-and-stopper problem, in which the controller controls the drift and volatility of a process in order to maximize a running reward based on that process, and the stopper chooses the time to stop the running reward and rewards the controller a final amount at that time. Our primary goal is to show that the minimal probability of ruin, whose stochastic representation does not have a classical form as does the utility maximization problem (i.e., the objective's dependence on the initial values of the state variables is implicit), is the unique classical solution of its Hamilton-Jacobi-Bellman (HJB) equation, which is a non-linear boundary-value problem. We establish our goal by exploiting the convex duality relationship between (a) and (b).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Erhan Bayraktar & Virginia Young, 2011. "Proving regularity of the minimal probability of ruin via a game of stopping and control," Finance and Stochastics, Springer, vol. 15(4), pages 785-818, December.
  • Handle: RePEc:spr:finsto:v:15:y:2011:i:4:p:785-818
    DOI: 10.1007/s00780-011-0160-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-011-0160-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-011-0160-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    2. Virginia Young, 2004. "Optimal Investment Strategy to Minimize the Probability of Lifetime Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(4), pages 106-126.
    3. Moshe A. Milevsky & Kristen S. Moore & Virginia R. Young, 2006. "Asset Allocation And Annuity‐Purchase Strategies To Minimize The Probability Of Financial Ruin," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 647-671, October.
    4. Bayraktar, Erhan & Young, Virginia R., 2007. "Minimizing the probability of lifetime ruin under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
    5. Milevsky, Moshe Arye & Ho, Kwok & Robinson, Chris, 1997. "Asset Allocation via the Conditional First Exit Time or How to Avoid Outliving Your Money," Review of Quantitative Finance and Accounting, Springer, vol. 9(1), pages 53-70, July.
    6. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    7. Moshe Milevsky & Chris Robinson, 2000. "Self-Annuitization and Ruin in Retirement," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 112-124.
    8. Bayraktar, Erhan & Young, Virginia R., 2008. "Mutual fund theorems when minimizing the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(2), pages 69-78, June.
    9. Darrell Duffie & Thaleia Zariphopoulou, 1993. "Optimal Investment With Undiversifiable Income Risk," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 135-148, April.
    10. Erhan Bayraktar & Virginia Young, 2007. "Correspondence between lifetime minimum wealth and utility of consumption," Finance and Stochastics, Springer, vol. 11(2), pages 213-236, April.
    11. Duffie, Darrell & Fleming, Wendell & Soner, H. Mete & Zariphopoulou, Thaleia, 1997. "Hedging in incomplete markets with HARA utility," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 753-782, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayraktar, Erhan & Young, Virginia R., 2008. "Maximizing utility of consumption subject to a constraint on the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(4), pages 204-212, December.
    2. Bayraktar, Erhan & Young, Virginia R., 2008. "Mutual fund theorems when minimizing the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(2), pages 69-78, June.
    3. Bayraktar, Erhan & Hu, Xueying & Young, Virginia R., 2011. "Minimizing the probability of lifetime ruin under stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 194-206, September.
    4. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2016. "Minimizing the probability of lifetime drawdown under constant consumption," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 210-223.
    5. Erhan Bayraktar & Asaf Cohen, 2015. "Risk Sensitive Control of the Lifetime Ruin Problem," Papers 1503.05769, arXiv.org, revised Jul 2016.
    6. Gaïgi, M’hamed & Ly Vath, Vathana & Scotti, Simone, 2022. "Optimal harvesting under marine reserves and uncertain environment," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1181-1194.
    7. Erhan Bayraktar & Yu-Jui Huang, 2010. "On the Multi-Dimensional Controller and Stopper Games," Papers 1009.0932, arXiv.org, revised Jan 2013.
    8. Frank Thomas Seifried, 2010. "Optimal Investment for Worst-Case Crash Scenarios: A Martingale Approach," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 559-579, August.
    9. Luciano Campi & Davide Santis, 2020. "Nonzero-Sum Stochastic Differential Games Between an Impulse Controller and a Stopper," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 688-724, August.
    10. Erhan Bayraktar & Yuchong Zhang, 2014. "Stochastic Perron's Method for the Probability of lifetime ruin problem under transaction costs," Papers 1404.7406, arXiv.org, revised Nov 2014.
    11. Erhan Bayraktar & Yuchong Zhang, 2014. "Minimizing the Probability of Lifetime Ruin Under Ambiguity Aversion," Papers 1402.1809, arXiv.org, revised Nov 2014.
    12. Hernández-Hernández, Daniel & Yamazaki, Kazutoshi, 2015. "Games of singular control and stopping driven by spectrally one-sided Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 1-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayraktar, Erhan & Young, Virginia R., 2007. "Minimizing the probability of lifetime ruin under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
    2. Erhan Bayraktar & Yuchong Zhang, 2014. "Minimizing the Probability of Lifetime Ruin Under Ambiguity Aversion," Papers 1402.1809, arXiv.org, revised Nov 2014.
    3. Erhan Bayraktar & Virginia Young, 2007. "Correspondence between lifetime minimum wealth and utility of consumption," Finance and Stochastics, Springer, vol. 11(2), pages 213-236, April.
    4. Wang, Ting & Young, Virginia R., 2012. "Optimal commutable annuities to minimize the probability of lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 200-216.
    5. Erhan Bayraktar & Virginia R. Young, 2007. "Optimal Deferred Life Annuities to Minimize the Probability of Lifetime Ruin," Papers math/0703862, arXiv.org, revised Oct 2007.
    6. Moshe A. Milevsky & Kristen S. Moore & Virginia R. Young, 2006. "Asset Allocation And Annuity‐Purchase Strategies To Minimize The Probability Of Financial Ruin," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 647-671, October.
    7. Bayraktar, Erhan & Hu, Xueying & Young, Virginia R., 2011. "Minimizing the probability of lifetime ruin under stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 194-206, September.
    8. Bayraktar, Erhan & Young, Virginia R., 2008. "Mutual fund theorems when minimizing the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(2), pages 69-78, June.
    9. Erhan Bayraktar & Asaf Cohen, 2015. "Risk Sensitive Control of the Lifetime Ruin Problem," Papers 1503.05769, arXiv.org, revised Jul 2016.
    10. Young, Virginia R., 2017. "Purchasing casualty insurance to avoid lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 133-142.
    11. Xiaoqing Liang & Virginia R. Young, 2020. "Minimizing the Probability of Lifetime Exponential Parisian Ruin," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 1036-1064, March.
    12. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2021. "Stochastic differential investment and reinsurance games with nonlinear risk processes and VaR constraints," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 168-184.
    13. Azcue, Pablo & Muler, Nora, 2009. "Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 26-34, February.
    14. Bayraktar, Erhan & Young, Virginia R., 2009. "Minimizing the lifetime shortfall or shortfall at death," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 447-458, June.
    15. Cohen, Asaf & Young, Virginia R., 2016. "Minimizing lifetime poverty with a penalty for bankruptcy," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 156-167.
    16. Landriault, David & Li, Bin & Loke, Sooie-Hoe & Willmot, Gordon E. & Xu, Di, 2017. "A note on the convexity of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 1-6.
    17. Arash Fahim & Lingjiong Zhu, 2015. "Optimal Investment in a Dual Risk Model," Papers 1510.04924, arXiv.org, revised Feb 2023.
    18. Bayraktar, Erhan & Young, Virginia R., 2008. "Maximizing utility of consumption subject to a constraint on the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(4), pages 204-212, December.
    19. Horneff, Wolfram J. & Maurer, Raimond H. & Mitchell, Olivia S. & Dus, Ivica, 2008. "Following the rules: Integrating asset allocation and annuitization in retirement portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 396-408, February.
    20. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.

    More about this item

    Keywords

    Probability of lifetime ruin; Stochastic games; Optimal stopping; Optimal investment; Viscosity solution; Hamilton–Jacobi–Bellman equation; Variational inequality; 93E20; 91B28; 60G40; G11; C61;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:15:y:2011:i:4:p:785-818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.