IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v15y2011i4p785-818.html
   My bibliography  Save this article

Proving regularity of the minimal probability of ruin via a game of stopping and control

Author

Listed:
  • Erhan Bayraktar

    ()

  • Virginia Young

    ()

Abstract

We reveal an interesting convex duality relationship between two problems: (a) minimizing the probability of lifetime ruin when the rate of consumption is stochastic and when the individual can invest in a Black-Scholes financial market; (b) a controller-and-stopper problem, in which the controller controls the drift and volatility of a process in order to maximize a running reward based on that process, and the stopper chooses the time to stop the running reward and rewards the controller a final amount at that time. Our primary goal is to show that the minimal probability of ruin, whose stochastic representation does not have a classical form as does the utility maximization problem (i.e., the objective's dependence on the initial values of the state variables is implicit), is the unique classical solution of its Hamilton-Jacobi-Bellman (HJB) equation, which is a non-linear boundary-value problem. We establish our goal by exploiting the convex duality relationship between (a) and (b).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Erhan Bayraktar & Virginia Young, 2011. "Proving regularity of the minimal probability of ruin via a game of stopping and control," Finance and Stochastics, Springer, vol. 15(4), pages 785-818, December.
  • Handle: RePEc:spr:finsto:v:15:y:2011:i:4:p:785-818 DOI: 10.1007/s00780-011-0160-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-011-0160-1
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moshe A. Milevsky & Kristen S. Moore & Virginia R. Young, 2006. "Asset Allocation And Annuity-Purchase Strategies To Minimize The Probability Of Financial Ruin," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 647-671.
    2. Bayraktar, Erhan & Young, Virginia R., 2007. "Minimizing the probability of lifetime ruin under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
    3. Bayraktar, Erhan & Young, Virginia R., 2008. "Mutual fund theorems when minimizing the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(2), pages 69-78, June.
    4. Darrell Duffie & Thaleia Zariphopoulou, 1993. "Optimal Investment With Undiversifiable Income Risk," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 135-148.
    5. Erhan Bayraktar & Virginia Young, 2007. "Correspondence between lifetime minimum wealth and utility of consumption," Finance and Stochastics, Springer, vol. 11(2), pages 213-236, April.
    6. Duffie, Darrell & Fleming, Wendell & Soner, H. Mete & Zariphopoulou, Thaleia, 1997. "Hedging in incomplete markets with HARA utility," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 753-782, May.
    7. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    8. Milevsky, Moshe Arye & Ho, Kwok & Robinson, Chris, 1997. "Asset Allocation via the Conditional First Exit Time or How to Avoid Outliving Your Money," Review of Quantitative Finance and Accounting, Springer, vol. 9(1), pages 53-70, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhan Bayraktar & Yuchong Zhang, 2014. "Stochastic Perron's Method for the Probability of lifetime ruin problem under transaction costs," Papers 1404.7406, arXiv.org, revised Nov 2014.
    2. Erhan Bayraktar & Yuchong Zhang, 2014. "Minimizing the Probability of Lifetime Ruin Under Ambiguity Aversion," Papers 1402.1809, arXiv.org, revised Nov 2014.
    3. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2016. "Minimizing the probability of lifetime drawdown under constant consumption," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 210-223.
    4. Bayraktar, Erhan & Young, Virginia R., 2008. "Maximizing utility of consumption subject to a constraint on the probability of lifetime ruin," Finance Research Letters, Elsevier, vol. 5(4), pages 204-212, December.
    5. Erhan Bayraktar & Asaf Cohen, 2015. "Risk Sensitive Control of the Lifetime Ruin Problem," Papers 1503.05769, arXiv.org, revised Jul 2016.
    6. Erhan Bayraktar & Yu-Jui Huang, 2010. "On the Multi-Dimensional Controller and Stopper Games," Papers 1009.0932, arXiv.org, revised Jan 2013.
    7. Hernández-Hernández, Daniel & Yamazaki, Kazutoshi, 2015. "Games of singular control and stopping driven by spectrally one-sided Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 1-38.
    8. Bayraktar, Erhan & Hu, Xueying & Young, Virginia R., 2011. "Minimizing the probability of lifetime ruin under stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 194-206, September.

    More about this item

    Keywords

    Probability of lifetime ruin; Stochastic games; Optimal stopping; Optimal investment; Viscosity solution; Hamilton–Jacobi–Bellman equation; Variational inequality; 93E20; 91B28; 60G40; G11; C61;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:15:y:2011:i:4:p:785-818. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.