IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Optimal Policies For Discrete Time Risk Processes With A Markov Chain Investment Model

  • Maikol Diasparra

    ()

  • Rosario Romera

    ()

Registered author(s):

    We consider a discrete risk process modelled by a Markov Decision Process. The surplus could be invested in stock market assets. We adopt a realistic point of view and we let the investment return process to be statistically dependent over time. We assume that follows a Markov Chain model. To minimize the risk there is a possibility to reinsure a part or the whole reserve. We consider proportional reinsurance. Recursive and integral equations for the ruin probability are given. Generalized Lundberg inequalities for the ruin probabilities are derived. Stochastic optimal control theory is used to determine the optimal stationary policy which minimizes the ruin probability. To illustrate these results numerical examples are included.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://docubib.uc3m.es/WORKINGPAPERS/WS/ws062408.pdf
    Download Restriction: no

    Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws062408.

    as
    in new window

    Length:
    Date of creation: May 2006
    Date of revision:
    Handle: RePEc:cte:wsrepe:ws062408
    Contact details of provider: Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
    Phone: 6249847
    Fax: 6249849
    Web page: http://portal.uc3m.es/portal/page/portal/dpto_estadistica

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    2. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    3. Groniowska, Agnieszka & Niemiro, Wojciech, 2005. "Controlled risk processes in discrete time: Lower and upper approximations to the optimal probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 433-440, June.
    4. Gajek, Leslaw, 2005. "On the deficit distribution when ruin occurs--discrete time model," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 13-24, February.
    5. Sundt, Bjorn & Teugels, Jozef L., 1997. "The adjustment function in ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 19(2), pages 85-94, April.
    6. Hipp, Christian & Taksar, Michael, 2000. "Stochastic control for optimal new business," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 185-192, May.
    7. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    8. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws062408. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.