IDEAS home Printed from
   My bibliography  Save this article

Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks


  • Guan, Guohui
  • Liang, Zongxia


In this paper, we investigate an optimal reinsurance and investment problem for an insurer whose surplus process is approximated by a drifted Brownian motion. Proportional reinsurance is to hedge the risk of insurance. Interest rate risk and inflation risk are considered. We suppose that the instantaneous nominal interest rate follows an Ornstein–Uhlenbeck process, and the inflation index is given by a generalized Fisher equation. To make the market complete, zero-coupon bonds and Treasury Inflation Protected Securities (TIPS) are included in the market. The financial market consists of cash, zero-coupon bond, TIPS and stock. We employ the stochastic dynamic programming to derive the closed-forms of the optimal reinsurance and investment strategies as well as the optimal utility function under the constant relative risk aversion (CRRA) utility maximization. Sensitivity analysis is given to show the economic behavior of the optimal strategies and optimal utility.

Suggested Citation

  • Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.
  • Handle: RePEc:eee:insuma:v:55:y:2014:i:c:p:105-115
    DOI: 10.1016/j.insmatheco.2014.01.007

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    2. Isabelle Bajeux-Besnainou & James V. Jordan & Roland Portait, 2003. "Dynamic Asset Allocation for Stocks, Bonds, and Cash," The Journal of Business, University of Chicago Press, vol. 76(2), pages 263-288, April.
    3. Liang, Zongxia & Huang, Jianping, 2011. "Optimal dividend and investing control of an insurance company with higher solvency constraints," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 501-511.
    4. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2010. "Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 211-221, February.
    5. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    6. Liang, Zhibin & Yuen, Kam Chuen & Guo, Junyi, 2011. "Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 207-215, September.
    7. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.
    8. Zhang, Aihua & Korn, Ralf & Ewald, Christian-Oliver, 2007. "Optimal management and inflation protection for defined contribution pension plans," MPRA Paper 3300, University Library of Munich, Germany.
    9. Robert Jarrow & Yildiray Yildirim, 2008. "Pricing Treasury Inflation Protected Securities and Related Derivatives using an HJM Model," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 16, pages 349-370 World Scientific Publishing Co. Pte. Ltd..
    10. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    11. He, Lin & Liang, Zongxia, 2009. "Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 88-94, February.
    12. Bäuerle, Nicole & Blatter, Anja, 2011. "Optimal control and dependence modeling of insurance portfolios with Lévy dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 398-405, May.
    13. Vigna, Elena & Haberman, Steven, 2001. "Optimal investment strategy for defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 233-262, April.
    14. Isabelle Bajeux-Besnainou & Roland Portait, 1998. "Dynamic Asset Allocation in a Mean-Variance Framework," Management Science, INFORMS, vol. 44(11-Part-2), pages 79-95, November.
    15. Michael J. Brennan & Yihong Xia, 2002. "Dynamic Asset Allocation under Inflation," Journal of Finance, American Finance Association, vol. 57(3), pages 1201-1238, June.
    16. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    17. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    18. Bai, Lihua & Guo, Junyi, 2008. "Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 968-975, June.
    19. Badaoui, Mohamed & Fernández, Begoña, 2013. "An optimal investment strategy with maximal risk aversion and its ruin probability in the presence of stochastic volatility on investments," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 1-13.
    20. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    21. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Chen, Lv & Qian, Linyi & Shen, Yang & Wang, Wei, 2016. "Constrained investment–reinsurance optimization with regime switching under variance premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 253-267.
    2. repec:spr:mathme:v:85:y:2017:i:3:d:10.1007_s00186-017-0580-6 is not listed on IDEAS
    3. Balbás, Alejandro & Garrido, José & Okhrati, Ramin, 2016. "Good deal measurement in asset pricing: Actuarial and financial implications," INDEM - Working Paper Business Economic Series 23546, Instituto para el Desarrollo Empresarial (INDEM).
    4. Christian Biener & Martin Eling & Shailee Pradhan, 2015. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2013 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 18(1), pages 129-141, March.
    5. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    6. repec:bpj:jossai:v:4:y:2016:i:2:p:131-148:n:3 is not listed on IDEAS
    7. Zou, Bin & Cadenillas, Abel, 2014. "Optimal investment and risk control policies for an insurer: Expected utility maximization," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 57-67.
    8. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
    9. Chang, Hao, 2015. "Dynamic mean–variance portfolio selection with liability and stochastic interest rate," Economic Modelling, Elsevier, vol. 51(C), pages 172-182.
    10. Peng, Xingchun & Wang, Wenyuan, 2016. "Optimal investment and risk control for an insurer under inside information," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 104-116.
    11. Liang, Zongxia & Song, Min, 2015. "Time-consistent reinsurance and investment strategies for mean–variance insurer under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 66-76.

    More about this item


    IE13; IE12; IM52; IB91; IE53; IE43; Optimal proportional reinsurance strategy; Optimal investment strategy; CRRA utility; Stochastic dynamic programming; Stochastic inflation index; Stochastic interest rate;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:55:y:2014:i:c:p:105-115. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.