IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0806.4125.html
   My bibliography  Save this paper

Ruin models with investment income

Author

Listed:
  • Jostein Paulsen

Abstract

This survey treats the problem of ruin in a risk model when assets earn investment income. In addition to a general presentation of the problem, topics covered are a presentation of the relevant integro-differential equations, exact and numerical solutions, asymptotic results, bounds on the ruin probability and also the possibility of minimizing the ruin probability by investment and possibly reinsurance control. The main emphasis is on continuous time models, but discrete time models are also covered. A fairly extensive list of references is provided, particularly of papers published after 1998. For more references to papers published before that, the reader can consult [47].

Suggested Citation

  • Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
  • Handle: RePEc:arx:papers:0806.4125
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0806.4125
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nyrhinen, Harri, 1999. "On the ruin probabilities in a general economic environment," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 319-330, October.
    2. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.
    3. Nyrhinen, Harri, 2001. "Finite and infinite time ruin probabilities in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 265-285, April.
    4. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    5. Delbaen, F. & Haezendonck, J., 1987. "Classical risk theory in an economic environment," Insurance: Mathematics and Economics, Elsevier, vol. 6(2), pages 85-116, April.
    6. Brekelmans, Ruud & De Waegenaere, Anja, 2001. "Approximating the finite-time ruin probability under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 217-229, October.
    7. Kam-Chuen Yuen & Guojing Wang, 2005. "Some Ruin Problems for a Risk Process with Stochastic Interest," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 129-142.
    8. Paulsen, Jostein & Kasozi, Juma & Steigen, Andreas, 2005. "A numerical method to find the probability of ultimate ruin in the classical risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 399-420, June.
    9. Wang, Guojing & Wu, Rong, 2001. "Distributions for the risk process with a stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 329-341, October.
    10. Wang, Rongming & Yang, Hailiang & Wang, Hanxing, 2004. "On the distribution of surplus immediately after ruin under interest force and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 703-714, December.
    11. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    12. Anna Frolova & Serguei Pergamenshchikov & Yuri Kabanov, 2002. "In the insurance business risky investments are dangerous," Finance and Stochastics, Springer, vol. 6(2), pages 227-235.
    13. Chi Liu & Hailiang Yang, 2004. "Optimal Investment for an Insurer to Minimize Its Probability of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 11-31.
    14. Hailiang Yang & Lihong Zhang, 2006. "Ruin problems for a discrete time risk model with random interest rate," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(2), pages 287-299, May.
    15. Schmidli, Hanspeter, 2005. "On optimal investment and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 25-35, February.
    16. Pergamenshchikov, Serguei & Zeitouny, Omar, 2006. "Ruin probability in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 267-278, February.
    17. Jun Cai & Chengming Xu, 2006. "On The Decomposition Of The Ruin Probability For A Jump-Diffusion Surplus Process Compounded By A Geometric Brownian Motion," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 120-129.
    18. Hans Gerber & Hailiang Yang, 2007. "Absolute Ruin Probabilities in a Jump Diffusion Risk Model with Investment," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 159-169.
    19. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    20. Cai, Jun & Dickson, David C. M., 2003. "Upper bounds for ultimate ruin probabilities in the Sparre Andersen model with interest," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 61-71, February.
    21. Albrecher, Hansjorg & Teugels, Jozef L. & Tichy, Robert F., 2001. "On a gamma series expansion for the time-dependent probability of collective ruin," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 345-355, December.
    22. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    23. de Kok, Ton G., 2003. "Ruin probabilities with compounding assets for discrete time finite horizon problems, independent period claim sizes and general premium structure," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 645-658, December.
    24. S. David Promislow & Virginia Young, 2005. "Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 110-128.
    25. Chen, Yu & Su, Chun, 2006. "Finite time ruin probability with heavy-tailed insurance and financial risks," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1812-1820, October.
    26. Paulsen, Jostein, 1998. "Sharp conditions for certain ruin in a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 135-148, June.
    27. Hailiang Yang & Lihong Zhang, 2001. "The Joint Distribution of Surplus Immediately before Ruin and the Deficit at Ruin under Interest Force," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(3), pages 92-103.
    28. Yang, Hailiang & Zhang, Lihong, 2001. "On the distribution of surplus immediately before ruin under interest force," Statistics & Probability Letters, Elsevier, vol. 55(3), pages 329-338, December.
    29. Norberg, Ragnar, 1999. "Ruin problems with assets and liabilities of diffusion type," Stochastic Processes and their Applications, Elsevier, vol. 81(2), pages 255-269, June.
    30. Grandits, Peter, 2004. "A Karamata-type theorem and ruin probabilities for an insurer investing proportionally in the stock market," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 297-305, April.
    31. Harrison, J. Michael, 1977. "Ruin problems with compounding assets," Stochastic Processes and their Applications, Elsevier, vol. 5(1), pages 67-79, February.
    32. Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
    33. Cai, Jun, 2004. "Ruin probabilities and penalty functions with stochastic rates of interest," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 53-78, July.
    34. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    35. Kalashnikov, Vladimir & Konstantinides, Dimitrios, 2000. "Ruin under interest force and subexponential claims: a simple treatment," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 145-149, August.
    36. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    37. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    38. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    39. Cardoso, Rui M. R. & R. Waters, Howard, 2003. "Recursive calculation of finite time ruin probabilities under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 659-676, December.
    40. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    41. Chen, Yiqing & Ng, Kai W., 2007. "The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 415-423, May.
    42. Wang, Guojing & Wu, Rong, 2008. "The expected discounted penalty function for the perturbed compound Poisson risk process with constant interest," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 59-64, February.
    43. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    44. Paulsen, Jostein, 1993. "Risk theory in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 327-361, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yiqing & Yuan, Zhongyi, 2017. "A revisit to ruin probabilities in the presence of heavy-tailed insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 75-81.
    2. Ronnie L. Loeffen & Pierre Patie, 2010. "Absolute ruin in the Ornstein-Uhlenbeck type risk model," Papers 1006.2712, arXiv.org.
    3. Albrecher, Hansjoerg & Constantinescu, Corina & Thomann, Enrique, 2012. "Asymptotic results for renewal risk models with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3767-3789.
    4. Arash Fahim & Lingjiong Zhu, 2015. "Optimal Investment in a Dual Risk Model," Papers 1510.04924, arXiv.org, revised Feb 2023.
    5. Chen, Yiqing, 2017. "Interplay of subexponential and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 78-83.
    6. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2017. "Uniform asymptotics for the ruin probabilities of a two-dimensional renewal risk model with dependent claims and risky investments," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 227-235.
    7. He, Yue & Kawai, Reiichiro, 2022. "Moment and polynomial bounds for ruin-related quantities in risk theory," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1255-1271.
    8. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.
    9. Jing Wang & Zbigniew Palmowski & Corina Constantinescu, 2021. "How Much We Gain by Surplus-Dependent Premiums—Asymptotic Analysis of Ruin Probability," Risks, MDPI, vol. 9(9), pages 1-17, August.
    10. Yin, Chuancun & Wen, Yuzhen, 2013. "An extension of Paulsen–Gjessing’s risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 469-476.
    11. Lioudmila Vostrikova, 2020. "On Distributions Of Exponential Functionals Of The Processes With Independent Increments," Working Papers hal-01725776, HAL.
    12. Runsheng Gu & Lioudmila Vostrikova & Bruno Séjourné, 2020. "Portfolio optimization of euro-denominated funds in French life insurance," Working Papers hal-03025191, HAL.
    13. Eckert, Johanna & Gatzert, Nadine, 2018. "Risk- and value-based management for non-life insurers under solvency constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 761-774.
    14. Henrik Hult & Filip Lindskog, 2011. "Ruin probabilities under general investments and heavy-tailed claims," Finance and Stochastics, Springer, vol. 15(2), pages 243-265, June.
    15. Gabriela Oliveira & Wagner Barreto-Souza & Roger W. C. Silva, 2021. "Convergence and inference for mixed Poisson random sums," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 751-777, July.
    16. Yiqing Chen & Jiajun Liu & Yang Yang, 2023. "Ruin under Light-Tailed or Moderately Heavy-Tailed Insurance Risks Interplayed with Financial Risks," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    17. Harri Nyrhinen, 2015. "On real growth and run-off companies in insurance ruin theory," Papers 1511.01763, arXiv.org.
    18. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    19. Dong, Y. & Spielmann, J., 2020. "Weak limits of random coefficient autoregressive processes and their application in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 1-11.
    20. Yuchao Dong & J'er^ome Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Papers 1907.01828, arXiv.org, revised Feb 2020.
    21. Yuchao Dong & Jérôme Spielmann, 2020. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Post-Print hal-02170829, HAL.
    22. Chuancun Yin & Yuzhen Wen, 2013. "An extension of Paulsen-Gjessing's risk model with stochastic return on investments," Papers 1302.6757, arXiv.org.
    23. Yuchao Dong & Jérôme Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Working Papers hal-02170829, HAL.
    24. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Chuancun & Wen, Yuzhen, 2013. "An extension of Paulsen–Gjessing’s risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 469-476.
    2. Chuancun Yin & Yuzhen Wen, 2013. "An extension of Paulsen-Gjessing's risk model with stochastic return on investments," Papers 1302.6757, arXiv.org.
    3. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    4. Albrecher, Hansjoerg & Constantinescu, Corina & Thomann, Enrique, 2012. "Asymptotic results for renewal risk models with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3767-3789.
    5. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    6. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.
    7. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    8. Paulsen, Jostein & Kasozi, Juma & Steigen, Andreas, 2005. "A numerical method to find the probability of ultimate ruin in the classical risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 399-420, June.
    9. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
    10. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    11. Emms, P. & Haberman, S., 2007. "Asymptotic and numerical analysis of the optimal investment strategy for an insurer," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 113-134, January.
    12. Yuri Kabanov & Serguei Pergamenshchikov, 2020. "Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process," Finance and Stochastics, Springer, vol. 24(1), pages 39-69, January.
    13. Xiang Lin, 2009. "Ruin theory for classical risk process that is perturbed by diffusion with risky investments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 33-44, January.
    14. Lu, Zhaoyang & Xu, Wei & Zhang, Yan & Sun, Yingling, 2009. "On the ruin probability for the Cox correlated risk model perturbed by diffusion," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 381-389, February.
    15. Wu, Rong & Wang, Guojing & Zhang, Chunsheng, 2005. "On a joint distribution for the risk process with constant interest force," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 365-374, June.
    16. Li, Ping & Zhao, Wu & Zhou, Wei, 2015. "Ruin probabilities and optimal investment when the stock price follows an exponential Lévy process," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 1030-1045.
    17. Klüppelberg, Claudia & Kostadinova, Radostina, 2008. "Integrated insurance risk models with exponential Lévy investment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 560-577, April.
    18. Azcue, Pablo & Muler, Nora, 2009. "Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 26-34, February.
    19. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    20. Yuchao Dong & Jérôme Spielmann, 2020. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Post-Print hal-02170829, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0806.4125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.