IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0806.4125.html
   My bibliography  Save this paper

Ruin models with investment income

Author

Listed:
  • Jostein Paulsen

Abstract

This survey treats the problem of ruin in a risk model when assets earn investment income. In addition to a general presentation of the problem, topics covered are a presentation of the relevant integro-differential equations, exact and numerical solutions, asymptotic results, bounds on the ruin probability and also the possibility of minimizing the ruin probability by investment and possibly reinsurance control. The main emphasis is on continuous time models, but discrete time models are also covered. A fairly extensive list of references is provided, particularly of papers published after 1998. For more references to papers published before that, the reader can consult [47].

Suggested Citation

  • Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
  • Handle: RePEc:arx:papers:0806.4125
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0806.4125
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Norberg, Ragnar, 1999. "Ruin problems with assets and liabilities of diffusion type," Stochastic Processes and their Applications, Elsevier, vol. 81(2), pages 255-269, June.
    2. Grandits, Peter, 2004. "A Karamata-type theorem and ruin probabilities for an insurer investing proportionally in the stock market," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 297-305, April.
    3. Harrison, J. Michael, 1977. "Ruin problems with compounding assets," Stochastic Processes and their Applications, Elsevier, vol. 5(1), pages 67-79, February.
    4. Nyrhinen, Harri, 1999. "On the ruin probabilities in a general economic environment," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 319-330, October.
    5. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.
    6. Nyrhinen, Harri, 2001. "Finite and infinite time ruin probabilities in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 265-285, April.
    7. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    8. Cai, Jun, 2004. "Ruin probabilities and penalty functions with stochastic rates of interest," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 53-78, July.
    9. Delbaen, F. & Haezendonck, J., 1987. "Classical risk theory in an economic environment," Insurance: Mathematics and Economics, Elsevier, vol. 6(2), pages 85-116, April.
    10. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    11. Paulsen, Jostein & Kasozi, Juma & Steigen, Andreas, 2005. "A numerical method to find the probability of ultimate ruin in the classical risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 399-420, June.
    12. Kalashnikov, Vladimir & Konstantinides, Dimitrios, 2000. "Ruin under interest force and subexponential claims: a simple treatment," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 145-149, August.
    13. Wang, Guojing & Wu, Rong, 2001. "Distributions for the risk process with a stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 329-341, October.
    14. Wang, Rongming & Yang, Hailiang & Wang, Hanxing, 2004. "On the distribution of surplus immediately after ruin under interest force and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 703-714, December.
    15. repec:spr:compst:v:63:y:2006:i:2:p:287-299 is not listed on IDEAS
    16. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    17. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    18. Anna Frolova & Serguei Pergamenshchikov & Yuri Kabanov, 2002. "In the insurance business risky investments are dangerous," Finance and Stochastics, Springer, vol. 6(2), pages 227-235.
    19. Cardoso, Rui M. R. & R. Waters, Howard, 2003. "Recursive calculation of finite time ruin probabilities under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 659-676, December.
    20. Chen, Yiqing & Ng, Kai W., 2007. "The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 415-423, May.
    21. Wang, Guojing & Wu, Rong, 2008. "The expected discounted penalty function for the perturbed compound Poisson risk process with constant interest," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 59-64, February.
    22. Brekelmans, Ruud & De Waegenaere, Anja, 2001. "Approximating the finite-time ruin probability under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 217-229, October.
    23. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    24. Schmidli, Hanspeter, 2005. "On optimal investment and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 25-35, February.
    25. Pergamenshchikov, Serguei & Zeitouny, Omar, 2006. "Ruin probability in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 267-278, February.
    26. Cai, Jun & Dickson, David C. M., 2003. "Upper bounds for ultimate ruin probabilities in the Sparre Andersen model with interest," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 61-71, February.
    27. Albrecher, Hansjorg & Teugels, Jozef L. & Tichy, Robert F., 2001. "On a gamma series expansion for the time-dependent probability of collective ruin," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 345-355, December.
    28. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    29. de Kok, Ton G., 2003. "Ruin probabilities with compounding assets for discrete time finite horizon problems, independent period claim sizes and general premium structure," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 645-658, December.
    30. Paulsen, Jostein, 1993. "Risk theory in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 327-361, June.
    31. Chen, Yu & Su, Chun, 2006. "Finite time ruin probability with heavy-tailed insurance and financial risks," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1812-1820, October.
    32. Paulsen, Jostein, 1998. "Sharp conditions for certain ruin in a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 135-148, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    2. repec:eee:ejores:v:266:y:2018:i:2:p:761-774 is not listed on IDEAS
    3. Chen, Yiqing & Yuan, Zhongyi, 2017. "A revisit to ruin probabilities in the presence of heavy-tailed insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 75-81.
    4. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.
    5. Henrik Hult & Filip Lindskog, 2011. "Ruin probabilities under general investments and heavy-tailed claims," Finance and Stochastics, Springer, vol. 15(2), pages 243-265, June.
    6. Yin, Chuancun & Wen, Yuzhen, 2013. "An extension of Paulsen–Gjessing’s risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 469-476.
    7. Albrecher, Hansjoerg & Constantinescu, Corina & Thomann, Enrique, 2012. "Asymptotic results for renewal risk models with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3767-3789.
    8. Arash Fahim & Lingjiong Zhu, 2015. "Optimal Investment in a Dual Risk Model," Papers 1510.04924, arXiv.org.
    9. repec:eee:insuma:v:77:y:2017:i:c:p:78-83 is not listed on IDEAS
    10. Chuancun Yin & Yuzhen Wen, 2013. "An extension of Paulsen-Gjessing's risk model with stochastic return on investments," Papers 1302.6757, arXiv.org.
    11. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2017. "Uniform asymptotics for the ruin probabilities of a two-dimensional renewal risk model with dependent claims and risky investments," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 227-235.
    12. Lioudmila Vostrikova, 2018. "On Distributions Of Exponential Functionals Of The Processes With Independent Increments," Working Papers hal-01725776, HAL.
    13. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
    14. Harri Nyrhinen, 2015. "On real growth and run-off companies in insurance ruin theory," Papers 1511.01763, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0806.4125. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.