IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.22347.html
   My bibliography  Save this paper

Robust Structural Estimation under Misspecified Latent-State Dynamics

Author

Listed:
  • Ertian Chen

Abstract

Estimation and counterfactual analysis in dynamic structural models rely on assumptions about the dynamic process of latent variables, which may be misspecified. We propose a framework to quantify the sensitivity of scalar parameters of interest (e.g., welfare, elasticity) to such assumptions. We derive bounds on the scalar parameter by perturbing a reference dynamic process, while imposing a stationarity condition for time-homogeneous models or a Markovian condition for time-inhomogeneous models. The bounds are the solutions to optimization problems, for which we derive a computationally tractable dual formulation. We establish consistency, convergence rate, and asymptotic distribution for the estimator of the bounds. We demonstrate the approach with two applications: an infinite-horizon dynamic demand model for new cars in the United Kingdom, Germany, and France, and a finite-horizon dynamic labor supply model for taxi drivers in New York City. In the car application, perturbed price elasticities deviate by at most 15.24% from the reference elasticities, while perturbed estimates of consumer surplus from an additional $3,000 electric vehicle subsidy vary by up to 102.75%. In the labor supply application, the perturbed Frisch labor supply elasticity deviates by at most 76.83% for weekday drivers and 42.84% for weekend drivers.

Suggested Citation

  • Ertian Chen, 2025. "Robust Structural Estimation under Misspecified Latent-State Dynamics," Papers 2510.22347, arXiv.org, revised Nov 2025.
  • Handle: RePEc:arx:papers:2510.22347
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.22347
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.22347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.