IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.12510.html
   My bibliography  Save this paper

Credit risk for large portfolios of green and brown loans: extending the ASRF model

Author

Listed:
  • Alessandro Ramponi
  • Sergio Scarlatti

Abstract

We propose a credit risk model for portfolios composed of green and brown loans, extending the ASRF framework via a two-factor copula structure. Systematic risk is modeled using potentially skewed distributions, allowing for asymmetric creditworthiness effects, while idiosyncratic risk remains Gaussian. Under a non-uniform exposure setting, we establish convergence in quadratic mean of the portfolio loss to a limit reflecting the distinct characteristics of the two loan segments. Numerical results confirm the theoretical findings and illustrate how value-at-risk is affected by portfolio granularity, default probabilities, factor loadings, and skewness. Our model accommodates differential sensitivity to systematic shocks and offers a tractable basis for further developments in credit risk modeling, including granularity adjustments, CDO pricing, and empirical analysis of green loan portfolios.

Suggested Citation

  • Alessandro Ramponi & Sergio Scarlatti, 2025. "Credit risk for large portfolios of green and brown loans: extending the ASRF model," Papers 2506.12510, arXiv.org.
  • Handle: RePEc:arx:papers:2506.12510
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.12510
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lutz Schloegl & Dominic O’Kane, 2005. "A note on the large homogeneous portfolio approximation with the Student-t copula," Finance and Stochastics, Springer, vol. 9(4), pages 577-584, October.
    2. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    3. Rossella Agliardi, 2022. "Green securitisation," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 12(4), pages 1330-1345, October.
    4. Javadi, Siamak & Masum, Abdullah-Al, 2021. "The impact of climate change on the cost of bank loans," Journal of Corporate Finance, Elsevier, vol. 69(C).
    5. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    6. Stefano Battiston & Antoine Mandel & Irene Monasterolo & Franziska Schütze & Gabriele Visentin, 2017. "A climate stress-test of the financial system," Nature Climate Change, Nature, vol. 7(4), pages 283-288, April.
    7. Lee, Yongwoong & Yang, Kisung, 2019. "Modeling diversification and spillovers of loan portfolios' losses by LHP approximation and copula," International Review of Financial Analysis, Elsevier, vol. 66(C).
    8. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, Enero-Abr.
    9. Henry He Huang & Joseph Kerstein & Chong Wang & Feng (Harry) Wu, 2022. "Firm climate risk, risk management, and bank loan financing," Strategic Management Journal, Wiley Blackwell, vol. 43(13), pages 2849-2880, December.
    10. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent, Jean-Paul & Sestier, Michael & Thomas, Stéphane, 2016. "Trading book and credit risk: How fundamental is the Basel review?," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 211-223.
    2. He, Feng & Ren, Xingzi & Wang, Yueren & Lei, Xingfan, 2025. "Climate risk and corporate bond credit spreads," Journal of International Money and Finance, Elsevier, vol. 154(C).
    3. Zhang, Dayong & Wu, Yalin & Ji, Qiang & Guo, Kun & Lucey, Brian, 2024. "Climate impacts on the loan quality of Chinese regional commercial banks," Journal of International Money and Finance, Elsevier, vol. 140(C).
    4. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    5. Xin Huang & Hao Zhou & Haibin Zhu, 2012. "Systemic Risk Contributions," Journal of Financial Services Research, Springer;Western Finance Association, vol. 42(1), pages 55-83, October.
    6. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
    7. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.
    8. Mendicino, Caterina & Nikolov, Kalin & Ramirez, Juan-Rubio & Suarez, Javier & Supera, Dominik, 2020. "Twin defaults and bank capital requirements," Working Paper Series 2414, European Central Bank.
    9. Rainer Masera, 2014. "CRR/CRD IV: the trees and the forest," PSL Quarterly Review, Economia civile, vol. 67(271), pages 381-422.
    10. Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Annals of Operations Research, Springer, vol. 332(1), pages 55-84, January.
    11. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    12. Rosen, Dan & Saunders, David, 2009. "Analytical methods for hedging systematic credit risk with linear factor portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 37-52, January.
    13. Paul Kupiec, 2007. "Financial stability and Basel II," Annals of Finance, Springer, vol. 3(1), pages 107-130, January.
    14. repec:hal:wpaper:hal-03458299 is not listed on IDEAS
    15. Rösch, Daniel & Scheule, Harald, 2009. "The Empirical Relation between Credit Quality, Recovery and Correlation," Hannover Economic Papers (HEP) dp-418, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    16. Berlin, Mitchell & Byun, Sung Je & D'Erasmo, Pablo & Yu, Edison, 2024. "Measuring climate transition risk at the regional level with an application to community banks," European Economic Review, Elsevier, vol. 170(C).
    17. Marc Gürtler & Dirk Heithecker, 2006. "Modellkonsistente Bestimmung des LGD im IRB-Ansatz von Basel II," Schmalenbach Journal of Business Research, Springer, vol. 58(5), pages 554-587, August.
    18. Yang, Bill Huajian, 2017. "Point-in-time PD term structure models for multi-period scenario loss projection: Methodologies and implementations for IFRS 9 ECL and CCAR stress testing," MPRA Paper 76271, University Library of Munich, Germany.
    19. Gagliardini, Patrick & Gourieroux, Christian, 2014. "Efficiency In Large Dynamic Panel Models With Common Factors," Econometric Theory, Cambridge University Press, vol. 30(5), pages 961-1020, October.
    20. József Vörös, 2024. "Some properties of the maximum loss on loan portfolios," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(1), pages 155-176, March.
    21. Marek Rutkowski & Silvio Tarca, 2014. "Regulatory Capital Modelling for Credit Risk," Papers 1412.1183, arXiv.org, revised Jul 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.12510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.