IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1412.1183.html
   My bibliography  Save this paper

Regulatory Capital Modelling for Credit Risk

Author

Listed:
  • Marek Rutkowski
  • Silvio Tarca

Abstract

The Basel II internal ratings-based (IRB) approach to capital adequacy for credit risk plays an important role in protecting the Australian banking sector against insolvency. We outline the mathematical foundations of regulatory capital for credit risk, and extend the model specification of the IRB approach to a more general setting than the usual Gaussian case. It rests on the proposition that quantiles of the distribution of conditional expectation of portfolio percentage loss may be substituted for quantiles of the portfolio loss distribution. We present a more economical proof of this proposition under weaker assumptions. Then, constructing a portfolio that is representative of credit exposures of the Australian banking sector, we measure the rate of convergence, in terms of number of obligors, of empirical loss distributions to the asymptotic (infinitely fine-grained) portfolio loss distribution. Moreover, we evaluate the sensitivity of credit risk capital to dependence structure as modelled by asset correlations and elliptical copulas. Access to internal bank data collected by the prudential regulator distinguishes our research from other empirical studies on the IRB approach.

Suggested Citation

  • Marek Rutkowski & Silvio Tarca, 2014. "Regulatory Capital Modelling for Credit Risk," Papers 1412.1183, arXiv.org, revised Jul 2016.
  • Handle: RePEc:arx:papers:1412.1183
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1412.1183
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    2. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    3. Silvio Tarca & Marek Rutkowski, 2014. "Assessing the Basel II Internal Ratings-Based Approach: Empirical Evidence from Australia," Papers 1412.0064, arXiv.org, revised Jul 2016.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Huang & Hao Zhou & Haibin Zhu, 2012. "Systemic Risk Contributions," Journal of Financial Services Research, Springer;Western Finance Association, vol. 42(1), pages 55-83, October.
    2. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.
    3. Mendicino, Caterina & Nikolov, Kalin & Ramirez, Juan-Rubio & Suarez, Javier & Supera, Dominik, 2020. "Twin defaults and bank capital requirements," Working Paper Series 2414, European Central Bank.
    4. Paul Kupiec, 2007. "Financial stability and Basel II," Annals of Finance, Springer, vol. 3(1), pages 107-130, January.
    5. Marc Gürtler & Dirk Heithecker, 2006. "Modellkonsistente Bestimmung des LGD im IRB-Ansatz von Basel II," Schmalenbach Journal of Business Research, Springer, vol. 58(5), pages 554-587, August.
    6. Maclachlan, Iain C, 2007. "An empirical study of corporate bond pricing with unobserved capital structure dynamics," MPRA Paper 28416, University Library of Munich, Germany.
    7. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    8. Matteo Accornero & Giuseppe Cascarino & Roberto Felici & Fabio Parlapiano & Alberto Maria Sorrentino, 2018. "Credit risk in banks’ exposures to non‐financial firms," European Financial Management, European Financial Management Association, vol. 24(5), pages 775-791, November.
    9. World Bank Group, 2016. "Nigeria," World Bank Publications - Reports 25776, The World Bank Group.
    10. Ulrich Erlenmaier & Hans Gersbach, 2014. "Default Correlations in the Merton Model," Review of Finance, European Finance Association, vol. 18(5), pages 1775-1809.
    11. Josselin Garnier & Jean-Baptiste Gaudemet & Anne Gruz, 2021. "The Climate Extended Risk Model (CERM)," Papers 2103.03275, arXiv.org, revised Apr 2022.
    12. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, March.
    13. Caterina Mendicino & Kalin Nikolov & Juan Rubio-Ramirez & Javier Suarez, 2020. "Twin Default Crises," Working Papers 2020-01, FEDEA.
    14. Yang, Bill Huajian, 2014. "Modeling Systematic Risk and Point-in-Time Probability of Default under the Vasicek Asymptotic Single Risk Factor Model Framework," MPRA Paper 59025, University Library of Munich, Germany.
    15. Tarashev, Nikola, 2010. "Measuring portfolio credit risk correctly: Why parameter uncertainty matters," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2065-2076, September.
    16. Petr Jakubík, 2007. "Credit Risk and the Finnish Economy," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 1(3), pages 254-285, November.
    17. Mathias Lé & Sandrine Lecarpentier & Henri Fraisse & Michel Dietsch, 2019. "Lower bank capital requirements as a policy tool to support credit to SMEs: evidence from a policy experiment," Working Papers hal-04141885, HAL.
    18. Yagüe Gurucharri, Miguel & García-Hiernaux, Alfredo & Jerez, Miguel, 1974. "Rethinking Basel III and beyond: a theory model to understand credit allocation and real state bubbles," MPRA Paper 119559, University Library of Munich, Germany, revised 18 Dec 2023.
    19. Puzanova, Natalia & Düllmann, Klaus, 2013. "Systemic risk contributions: A credit portfolio approach," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1243-1257.
    20. Marco Bee, 2007. "The asymptotic loss distribution in a fat-tailed factor model of portfolio credit risk," Department of Economics Working Papers 0701, Department of Economics, University of Trento, Italia.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1412.1183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.