IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.10369.html
   My bibliography  Save this paper

An Interpretable Machine Learning Approach in Predicting Inflation Using Payments System Data: A Case Study of Indonesia

Author

Listed:
  • Wishnu Badrawani

Abstract

This paper evaluates the performance of prominent machine learning (ML) algorithms in predicting Indonesia's inflation using the payment system, capital market, and macroeconomic data. We compare the forecasting performance of each ML model, namely shrinkage regression, ensemble learning, and super vector regression, to that of the univariate time series ARIMA and SARIMA models. We examine various out-of-bag sample periods in each ML model to determine the appropriate data-splitting ratios for the regression case study. This study indicates that all ML models produced lower RMSEs and reduced average forecast errors by 45.16 percent relative to the ARIMA benchmark, with the Extreme Gradient Boosting model outperforming other ML models and the benchmark. Using the Shapley value, we discovered that numerous payment system variables significantly predict inflation. We explore the ML forecast using local Shapley decomposition and show the relationship between the explanatory variables and inflation for interpretation. The interpretation of the ML forecast highlights some significant findings and offers insightful recommendations, enhancing previous economic research that uses a more established econometric method. Our findings advocate ML models as supplementary tools for the central bank to predict inflation and support monetary policy.

Suggested Citation

  • Wishnu Badrawani, 2025. "An Interpretable Machine Learning Approach in Predicting Inflation Using Payments System Data: A Case Study of Indonesia," Papers 2506.10369, arXiv.org.
  • Handle: RePEc:arx:papers:2506.10369
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.10369
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    2. repec:cup:cbooks:9781108422536 is not listed on IDEAS
    3. Valentina Aprigliano & Guerino Ardizzi & Libero Monteforte, 2019. "Using Payment System Data to Forecast Economic Activity," International Journal of Central Banking, International Journal of Central Banking, vol. 15(4), pages 55-80, October.
    4. Juhro, Solikin M. & Iyke, Bernard Njindan & Narayan, Paresh Kumar, 2021. "Interdependence between monetary policy and asset prices in ASEAN-5 countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    5. Barnett, William A. & Park, Hyun & Park, Sohee, 2021. "The Barnett Critique," MPRA Paper 108413, University Library of Munich, Germany.
    6. Sebastian Doerr & Leonardo Gambacorta & José María Serena Garralda, 2021. "Big data and machine learning in central banking," BIS Working Papers 930, Bank for International Settlements.
    7. Mr. Balazs Csonto & Yuxuan Huang & Mr. Camilo E Tovar Mora, 2019. "Is Digitalization Driving Domestic Inflation?," IMF Working Papers 2019/271, International Monetary Fund.
    8. Chiranjit Chakraborty & Andreas Joseph, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    9. Shabir Mohsin Hashmi & Muhammad Akram Gilal & Wing-Keung Wong, 2021. "Sustainability of Global Economic Policy and Stock Market Returns in Indonesia," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    10. Jun Zhang & Lan Li & Wei Chen, 2021. "Predicting Stock Price Using Two-Stage Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1237-1261, April.
    11. Claudiu Tiberiu Albulescu & Christian Aubin & Daniel Goyeau, 2017. "Stock prices, inflation and inflation uncertainty in the U.S.: testing the long-run relationship considering Dow Jones sector indexes," Applied Economics, Taylor & Francis Journals, vol. 49(18), pages 1794-1807, April.
    12. Galbraith, John W. & Tkacz, Greg, 2018. "Nowcasting with payments system data," International Journal of Forecasting, Elsevier, vol. 34(2), pages 366-376.
    13. Önder Özgür & Uğur Akkoç, 2021. "Inflation forecasting in an emerging economy: selecting variables with machine learning algorithms," International Journal of Emerging Markets, Emerald Group Publishing Limited, vol. 17(8), pages 1889-1908, February.
    14. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    15. Solikin M. Juhro, 2022. "Central Bank Policy Mix: Issues, Challenges, and Policy Responses," Springer Books, in: Perry Warjiyo & Solikin M. Juhro (ed.), Central Bank Policy Mix: Issues, Challenges, and Policy Responses, chapter 0, pages 17-26, Springer.
    16. Solikin M. Juhro & Ferry Syarifuddin, 2017. "Synergy On The Vuca World: Maintaining The Resilience And The Momentum Of Economic Growth," Proceedings, Bank Indonesia.
    17. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    18. Lepetyuk, Vadym & Maliar, Lilia & Maliar, Serguei, 2020. "When the U.S. catches a cold, Canada sneezes: A lower-bound tale told by deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    21. Wong, Zoey Jia Rou & Tang, Tuck Cheong, 2020. "Credit Card Usage and Inflation: A Case Study of a Small Open Economy," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 54(1), pages 19-32.
    22. Lan Dong Thi Ngoc & Duy-Linh Bui & Sang Ha & Huong Tran Thi & Viet Pham Minh & Ha-Nam Nguyen, 2024. "Using Machine Learning to Improve Forecasting Efficiency for the Stock Market," Springer Books, in: Thi Hong Nga Nguyen & Darrell Norman Burrell & Vijender Kumar Solanki & Ngoc Anh Mai (ed.), Proceedings of the 4th International Conference on Research in Management and Technovation, pages 439-447, Springer.
    23. Chandra Utama & Miryam B.L. Wijaya & Charvin Lim, 2017. "The Role Of Interest Rates And Provincial Monetary Aggregate In Maintaining Inflation In Indonesia," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 19(3), pages 267-286, January.
    24. Sri Isnowati & Fx Sugiyanto & Akhmad Syakir Kurnia & Endang Tjahjaningsih, 2020. "Exchange Rate Pass Through Viewed from Wholesale Price in Indonesia," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 16(3), pages 137-147.
    25. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    26. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    27. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    28. Ortega, Eva & Osbat, Chiara, 2020. "Exchange rate pass-through in the euro area and EU countries," Occasional Paper Series 241, European Central Bank.
    29. Brooks,Chris, 2019. "Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9781108436823, September.
    30. Sugeng Wahyudi & H. Hersugondo & Rio Dhani Laksana & R. Rudy, 2017. "Macroeconomic Fundamental and Stock Price Index in Southeast Asia Countries: A Comparative Study," International Journal of Economics and Financial Issues, Econjournals, vol. 7(2), pages 182-187.
    31. Mr. Zhongxia Zhang, 2021. "Stock Returns and Inflation Redux: An Explanation from Monetary Policy in Advanced and Emerging Markets," IMF Working Papers 2021/219, International Monetary Fund.
    32. Perry Warjiyo & Solikin M. Juhro (ed.), 2022. "Central Bank Policy Mix: Issues, Challenges, and Policy Responses," Springer Books, Springer, number 978-981-16-6827-2, December.
    33. Masudul Hasan Adil & Neeraj Hatekar & Pravakar Sahoo, 2020. "The Impact of Financial Innovation on the Money Demand Function: An Empirical Verification in India," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 14(1), pages 28-61, February.
    34. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    35. repec:idn:journl:v:19:y:2017:i:3:p:1-20 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    2. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    3. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    4. James Chapman & Ajit Desai, . "Using payments data to nowcast macroeconomic variables during the onset of Covid-19," Journal of Financial Market Infrastructures, Journal of Financial Market Infrastructures.
    5. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    6. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    7. Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
    8. Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
    9. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    10. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    11. Dennis Kant & Andreas Pick & Jasper de Winter, 2025. "Nowcasting GDP using machine learning methods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 109(1), pages 1-24, March.
    12. Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
    13. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    14. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    15. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    16. Vasilios Plakandaras & Ioannis Pragidis & Paris Karypidis, 2024. "Deciphering the U.S. metropolitan house price dynamics," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 52(2), pages 434-485, March.
    17. Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.
    18. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
    19. Hans Genberg & Özer Karagedikli, 2021. "Machine Learning and Central Banks: Ready for Prime Time?," Working Papers wp43, South East Asian Central Banks (SEACEN) Research and Training Centre.
    20. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.10369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.