IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.11019.html
   My bibliography  Save this paper

Predicting Financial Market Crises using Multilayer Network Analysis and LSTM-based Forecasting of Spillover Effects

Author

Listed:
  • Mahdi Kohan Sefidi

Abstract

Financial crises often occur without warning, yet markets leading up to these events display increasing volatility and complex interdependencies across multiple sectors. This study proposes a novel approach to predicting market crises by combining multilayer network analysis with Long Short-Term Memory (LSTM) models, using Granger causality to capture within-layer connections and Random Forest to model interlayer relationships. Specifically, we utilize Granger causality to model the temporal dependencies between market variables within individual layers, such as asset prices, trading values, and returns. To represent the interactions between different market variables across sectors, we apply Random Forest to model the interlayer connections, capturing the spillover effects between these features. The LSTM model is then trained to predict market instability and potential crises based on the dynamic features of the multilayer network. Our results demonstrate that this integrated approach, combining Granger causality, Random Forest, and LSTM, significantly enhances the accuracy of market crisis prediction, outperforming traditional forecasting models. This methodology provides a powerful tool for financial institutions and policymakers to better monitor systemic risks and take proactive measures to mitigate financial crises.

Suggested Citation

  • Mahdi Kohan Sefidi, 2025. "Predicting Financial Market Crises using Multilayer Network Analysis and LSTM-based Forecasting of Spillover Effects," Papers 2505.11019, arXiv.org.
  • Handle: RePEc:arx:papers:2505.11019
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.11019
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Prashant Pilla & Raji Mekonen, 2025. "Forecasting S&P 500 Using LSTM Models," Papers 2501.17366, arXiv.org.
    3. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    4. Bonaccolto, Giovanni & Caporin, Massimiliano & Panzica, Roberto, 2019. "Estimation and model-based combination of causality networks among large US banks and insurance companies," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 1-21.
    5. Papana, Angeliki & Kyrtsou, Catherine & Kugiumtzis, Dimitris & Diks, Cees, 2017. "Financial networks based on Granger causality: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 65-73.
    6. Dror Y. Kenett & Sary Levy-Carciente & Adam Avakian & H. Eugene Stanley & Shlomo Havlin, 2015. "Dynamical Macroprudential Stress Testing Using Network Theory," Working Papers 15-12, Office of Financial Research, US Department of the Treasury.
    7. Levy-Carciente, Sary & Kenett, Dror Y. & Avakian, Adam & Stanley, H. Eugene & Havlin, Shlomo, 2015. "Dynamical macroprudential stress testing using network theory," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 164-181.
    8. Janet L. Yellen, 2013. "Interconnectedness and Systemic Risk: Lessons from the Financial Crisis and Policy Implications : a speech at the American Economic Association/American Finance Association Joint Luncheon, San Diego, ," Speech 631, Board of Governors of the Federal Reserve System (U.S.).
    9. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Wasim & Tiwari, Shiv Ratan & Wadhwani, Akshay & Khan, Mohammad Azeem & Bekiros, Stelios, 2023. "Financial networks and systemic risk vulnerabilities: A tale of Indian banks," Research in International Business and Finance, Elsevier, vol. 65(C).
    2. Wang, Gang-Jin & Jiang, Zhi-Qiang & Lin, Min & Xie, Chi & Stanley, H. Eugene, 2018. "Interconnectedness and systemic risk of China's financial institutions," Emerging Markets Review, Elsevier, vol. 35(C), pages 1-18.
    3. Yizhuo Zhang & Rui Chen & Ding Ma, 2020. "A Weighted and Directed Perspective of Global Stock Market Connectedness: A Variance Decomposition and GERGM Framework," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    4. Chen, Bin-xia & Sun, Yan-lin, 2024. "Financial market connectedness between the U.S. and China: A new perspective based on non-linear causality networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    5. Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
    6. Chen, Bin-xia & Sun, Yan-lin, 2023. "Extreme risk contagion between international crude oil and China's energy-intensive sectors: New evidence from quantile Granger causality and spillover methods," Energy, Elsevier, vol. 285(C).
    7. Zhang, Yan & Xu, Yushi & Zhu, Xintong & Huang, Jionghao, 2024. "Coal price shock propagation through sectoral financial interconnectedness in China's stock market: Quantile coherency network modelling and shock decomposition analysis," Journal of Commodity Markets, Elsevier, vol. 34(C).
    8. Raddant, Matthias & Kenett, Dror Y., 2021. "Interconnectedness in the global financial market," Journal of International Money and Finance, Elsevier, vol. 110(C).
    9. Germán G. Creamer & Tal Ben-Zvi, 2021. "Volatility and Risk in the Energy Market: A Trade Network Approach," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    10. Onur Polat, 2021. "Time-Varying Network Connectedness of G-7 Economic Policy Uncertainties: A Locally Stationary TVP-VAR Approach," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 7(2), pages 47-59, December.
    11. Xiaoye Jin, 2024. "Salience theory value spillovers between China’s systemically important banks: evidence from quantile connectedness," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-39, December.
    12. Lin, Sihan & Chen, Shoudong, 2021. "Dynamic connectedness of major financial markets in China and America," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 646-656.
    13. Addi, Abdelhamid & Bouoiyour, Jamal, 2023. "Interconnectedness and extreme risk: Evidence from dual banking systems," Economic Modelling, Elsevier, vol. 120(C).
    14. Lu, Shan & Zhao, Jichang & Wang, Huiwen & Ren, Ruoen, 2018. "Herding boosts too-connected-to-fail risk in stock market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 945-964.
    15. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    16. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    17. Barucca, Paolo & Mahmood, Tahir & Silvestri, Laura, 2021. "Common asset holdings and systemic vulnerability across multiple types of financial institution," Journal of Financial Stability, Elsevier, vol. 52(C).
    18. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    19. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    20. Xin Yang & Shan Chen & Hong Liu & Xiaoguang Yang & Chuangxia Huang, 2023. "Jump volatility spillover network based measurement of systemic importance of Chinese financial institutions," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1201-1213, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.11019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.