IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.13520.html
   My bibliography  Save this paper

Bayesian Model Averaging in Causal Instrumental Variable Models

Author

Listed:
  • Gregor Steiner
  • Mark Steel

Abstract

Instrumental variables are a popular tool to infer causal effects under unobserved confounding, but choosing suitable instruments is challenging in practice. We propose gIVBMA, a Bayesian model averaging procedure that addresses this challenge by averaging across different sets of instrumental variables and covariates in a structural equation model. Our approach extends previous work through a scale-invariant prior structure and accommodates non-Gaussian outcomes and treatments, offering greater flexibility than existing methods. The computational strategy uses conditional Bayes factors to update models separately for the outcome and treatments. We prove that this model selection procedure is consistent. By explicitly accounting for model uncertainty, gIVBMA allows instruments and covariates to switch roles and provides robustness against invalid instruments. In simulation experiments, gIVBMA outperforms current state-of-the-art methods. We demonstrate its usefulness in two empirical applications: the effects of malaria and institutions on income per capita and the returns to schooling. A software implementation of gIVBMA is available in Julia.

Suggested Citation

  • Gregor Steiner & Mark Steel, 2025. "Bayesian Model Averaging in Causal Instrumental Variable Models," Papers 2504.13520, arXiv.org, revised May 2025.
  • Handle: RePEc:arx:papers:2504.13520
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.13520
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Windmeijer & Xiaoran Liang & Fernando P. Hartwig & Jack Bowden, 2021. "The confidence interval method for selecting valid instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 752-776, September.
    2. Loraine Seng & Jialiang Li, 2022. "Structural Equation Model Averaging: Methodology and Application," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 815-828, April.
    3. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    4. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    5. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    6. Daron Acemoglu & Simon Johnson & James A. Robinson, 2001. "The Colonial Origins of Comparative Development: An Empirical Investigation," American Economic Review, American Economic Association, vol. 91(5), pages 1369-1401, December.
    7. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney, 2012. "Bayesian model averaging in the instrumental variable regression model," Journal of Econometrics, Elsevier, vol. 171(2), pages 237-250.
    8. Carrasco, Marine, 2012. "A regularization approach to the many instruments problem," Journal of Econometrics, Elsevier, vol. 170(2), pages 383-398.
    9. Kai Carstensen & Erich Gundlach, 2006. "The Primacy of Institutions Reconsidered: Direct Income Effects of Malaria Prevalence," The World Bank Economic Review, World Bank, vol. 20(3), pages 309-339.
    10. Guido Kuersteiner & Ryo Okui, 2010. "Constructing Optimal Instruments by First-Stage Prediction Averaging," Econometrica, Econometric Society, vol. 78(2), pages 697-718, March.
    11. Chi Wang & Francesca Dominici & Giovanni Parmigiani & Corwin Matthew Zigler, 2015. "Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models," Biometrics, The International Biometric Society, vol. 71(3), pages 654-665, September.
    12. Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
    13. Ley, Eduardo & Steel, Mark F.J., 2012. "Mixtures of g-priors for Bayesian model averaging with economic applications," Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
    14. Martins, Luis F. & Gabriel, Vasco J., 2014. "Linear instrumental variables model averaging estimation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 709-724.
    15. Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 661-671, September.
    16. Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
    17. Okui, Ryo, 2011. "Instrumental variable estimation in the presence of many moment conditions," Journal of Econometrics, Elsevier, vol. 165(1), pages 70-86.
    18. Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Rejoinder: Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 680-686, September.
    19. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    20. Alex Lenkoski & Theo S. Eicher & Adrian E. Raftery, 2014. "Two-Stage Bayesian Model Averaging in Endogenous Variable Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 122-151, June.
    21. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    22. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    23. Chao, J. C. & Phillips, P. C. B., 1998. "Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior," Journal of Econometrics, Elsevier, vol. 87(1), pages 49-86, August.
    24. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    25. Nicolas Apfel & Julia Hatamyar & Martin Huber & Jannis Kueck, 2024. "Learning control variables and instruments for causal analysis in observational data," Papers 2407.04448, arXiv.org.
    26. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
    27. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    28. Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
    29. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    30. Small, Dylan S., 2007. "Sensitivity Analysis for Instrumental Variables Regression With Overidentifying Restrictions," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1049-1058, September.
    31. Jeffrey D. Sachs, 2003. "Institutions Don't Rule: Direct Effects of Geography on Per Capita Income," NBER Working Papers 9490, National Bureau of Economic Research, Inc.
    32. Jeffrey M. Wooldridge, 2015. "Control Function Methods in Applied Econometrics," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 420-445.
    33. Samuel Livingstone & Giacomo Zanella, 2022. "The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 496-523, April.
    34. Minerva Mukhopadhyay & Tapas Samanta & Arijit Chakrabarti, 2015. "On consistency and optimality of Bayesian variable selection based on $$g$$ g -prior in normal linear regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 963-997, October.
    35. Nicolas Apfel & Xiaoran Liang, 2024. "Agglomerative hierarchical clustering for selecting valid instrumental variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1201-1219, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
    2. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    3. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    4. Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
    5. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    7. Hongwei Shi & Xinyu Zhang & Xu Guo & Baihua He & Chenyang Wang, 2025. "Testing overidentifying restrictions on high-dimensional instruments and covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(2), pages 331-352, April.
    8. Yiqi Lin & Frank Windmeijer & Xinyuan Song & Qingliang Fan, 2022. "On the instrumental variable estimation with many weak and invalid instruments," Papers 2207.03035, arXiv.org, revised Dec 2023.
    9. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    10. Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Andros Kourtellos & Alex Lenkoski & Kyriakos Petrou, 2017. "Measuring the Strength of the Theories of Government Size," University of Cyprus Working Papers in Economics 11-2017, University of Cyprus Department of Economics.
    12. Thomas Wiemann, 2023. "Optimal Categorical Instrumental Variables," Papers 2311.17021, arXiv.org, revised May 2024.
    13. Alena Skolkova, 2023. "Instrumental Variable Estimation with Many Instruments Using Elastic-Net IV," CERGE-EI Working Papers wp759, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    14. Anna Mikusheva & Liyang Sun, 2024. "Weak identification with many instruments," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages -28.
    15. Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
    16. Jinyuan Chang & Zhentao Shi & Jia Zhang, 2021. "Culling the herd of moments with penalized empirical likelihood," Papers 2108.03382, arXiv.org, revised May 2022.
    17. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2020. "Ill-posed estimation in high-dimensional models with instrumental variables," Journal of Econometrics, Elsevier, vol. 219(1), pages 171-200.
    18. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    19. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. León-González, Roberto & Montolio, Daniel, 2015. "Endogeneity and panel data in growth regressions: A Bayesian model averaging approach," Journal of Macroeconomics, Elsevier, vol. 46(C), pages 23-39.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.13520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.