IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.17836.html
   My bibliography  Save this paper

Clearing Sections of Lattice Liability Networks

Author

Listed:
  • Robert Ghrist
  • Julian Gould
  • Miguel Lopez
  • Hans Riess

Abstract

Modern financial networks involve complex obligations that transcend simple monetary debts: multiple currencies, prioritized claims, supply chain dependencies, and more. We present a mathematical framework that unifies and extends these scenarios by recasting the classical Eisenberg-Noe model of financial clearing in terms of lattice liability networks. Each node in the network carries a complete lattice of possible states, while edges encode nominal liabilities. Our framework generalizes the scalar-valued clearing vectors of the classical model to lattice-valued clearing sections, preserving the elegant fixed-point structure while dramatically expanding its descriptive power. Our main theorem establishes that such networks possess clearing sections that themselves form a complete lattice under the product order. This structure theorem enables tractable analysis of equilibria in diverse domains, including multi-currency financial systems, decentralized finance with automated market makers, supply chains with resource transformation, and permission networks with complex authorization structures. We further extend our framework to chain-complete lattices for term structure models and multivalued mappings for complex negotiation systems. Our results demonstrate how lattice theory provides a natural language for understanding complex network dynamics across multiple domains, creating a unified mathematical foundation for analyzing systemic risk, resource allocation, and network stability.

Suggested Citation

  • Robert Ghrist & Julian Gould & Miguel Lopez & Hans Riess, 2025. "Clearing Sections of Lattice Liability Networks," Papers 2503.17836, arXiv.org.
  • Handle: RePEc:arx:papers:2503.17836
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.17836
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caccioli, Fabio & Shrestha, Munik & Moore, Cristopher & Farmer, J. Doyne, 2014. "Stability analysis of financial contagion due to overlapping portfolios," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 233-245.
    2. Helmut Elsinger & Alfred Lehar & Martin Summer, 2006. "Risk Assessment for Banking Systems," Management Science, INFORMS, vol. 52(9), pages 1301-1314, September.
    3. Capponi, Agostino & Chen, Peng-Chu, 2015. "Systemic risk mitigation in financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 152-166.
    4. Zhou Lin, 1994. "The Set of Nash Equilibria of a Supermodular Game Is a Complete Lattice," Games and Economic Behavior, Elsevier, vol. 7(2), pages 295-300, September.
    5. Glasserman, Paul & Young, H. Peyton, 2016. "Contagion in financial networks," LSE Research Online Documents on Economics 68681, London School of Economics and Political Science, LSE Library.
    6. Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
    7. Kartik Anand & Ben Craig & Goetz von Peter, 2015. "Filling in the blanks: network structure and interbank contagion," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 625-636, April.
    8. Paul Glasserman & H. Peyton Young, 2016. "Contagion in Financial Networks," Journal of Economic Literature, American Economic Association, vol. 54(3), pages 779-831, September.
    9. Glasserman, Paul & Young, H. Peyton, 2015. "How likely is contagion in financial networks?," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 383-399.
    10. Furfine, Craig H, 2003. "Interbank Exposures: Quantifying the Risk of Contagion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 35(1), pages 111-128, February.
    11. Upper, Christian, 2011. "Simulation methods to assess the danger of contagion in interbank markets," Journal of Financial Stability, Elsevier, vol. 7(3), pages 111-125, August.
    12. L. C. G. Rogers & L. A. M. Veraart, 2013. "Failure and Rescue in an Interbank Network," Management Science, INFORMS, vol. 59(4), pages 882-898, April.
    13. Zachary Feinstein, 2017. "Obligations with Physical Delivery in a Multi-Layered Financial Network," Papers 1702.07936, arXiv.org, revised May 2019.
    14. Arnold, Bruce & Borio, Claudio & Ellis, Luci & Moshirian, Fariborz, 2012. "Systemic risk, macroprudential policy frameworks, monitoring financial systems and the evolution of capital adequacy," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3125-3132.
    15. Mistrulli, Paolo Emilio, 2011. "Assessing financial contagion in the interbank market: Maximum entropy versus observed interbank lending patterns," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1114-1127, May.
    16. Rodrigo Cifuentes & Hyun Song Shin & Gianluigi Ferrucci, 2005. "Liquidity Risk and Contagion," Journal of the European Economic Association, MIT Press, vol. 3(2-3), pages 556-566, 04/05.
    17. Gandy, Axel & Veraart, Luitgard A. M., 2017. "A Bayesian methodology for systemic risk assessment in financial networks," LSE Research Online Documents on Economics 66312, London School of Economics and Political Science, LSE Library.
    18. Gai, Prasanna & Haldane, Andrew & Kapadia, Sujit, 2011. "Complexity, concentration and contagion," Journal of Monetary Economics, Elsevier, vol. 58(5), pages 453-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    2. Bardoscia, Marco & Barucca, Paolo & Brinley Codd, Adam & Hill, John, 2017. "The decline of solvency contagion risk," Bank of England working papers 662, Bank of England.
    3. Bardoscia, Marco & Barucca, Paolo & Codd, Adam Brinley & Hill, John, 2019. "Forward-looking solvency contagion," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    4. Covi, Giovanni & Gorpe, Mehmet Ziya & Kok, Christoffer, 2021. "CoMap: Mapping Contagion in the Euro Area Banking Sector," Journal of Financial Stability, Elsevier, vol. 53(C).
    5. Aikman, David & Beale, Daniel & Brinley-Codd, Adam & Covi, Giovanni & Hüser, Anne‑Caroline & Lepore, Caterina, 2023. "Macroprudential stress‑test models: a survey," Bank of England working papers 1037, Bank of England.
    6. Zachary Feinstein & Weijie Pang & Birgit Rudloff & Eric Schaanning & Stephan Sturm & Mackenzie Wildman, 2017. "Sensitivity of the Eisenberg-Noe clearing vector to individual interbank liabilities," Papers 1708.01561, arXiv.org, revised Oct 2018.
    7. Paolo Barucca & Marco Bardoscia & Fabio Caccioli & Marco D'Errico & Gabriele Visentin & Guido Caldarelli & Stefano Battiston, 2020. "Network valuation in financial systems," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1181-1204, October.
    8. Ebrahimi Kahou, Mahdi & Lehar, Alfred, 2017. "Macroprudential policy: A review," Journal of Financial Stability, Elsevier, vol. 29(C), pages 92-105.
    9. Spiros Bougheas & Adam Hal Spencer, 2022. "Fire sales and ex ante valuation of systemic risk: A financial equilibrium networks approach," Discussion Papers 2022/04, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    10. Sun, Lixin, 2020. "Financial networks and systemic risk in China's banking system," Finance Research Letters, Elsevier, vol. 34(C).
    11. Paul Glasserman & Peyton Young, 2015. "Contagion in Financial Networks," Economics Series Working Papers 764, University of Oxford, Department of Economics.
    12. Chen, Yu & Jin, Shuyue & Wang, Xiasi, 2021. "Solvency contagion risk in the Chinese commercial banks’ network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    13. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    14. Paul Glasserman & H. Peyton Young, 2015. "Contagion in Financial Networks," Working Papers 15-21, Office of Financial Research, US Department of the Treasury.
    15. Shakya, Shasta, 2022. "Geographic networks and spillovers between banks," Journal of Corporate Finance, Elsevier, vol. 77(C).
    16. Barnett, William A. & Wang, Xue & Xu, Hai-Chuan & Zhou, Wei-Xing, 2022. "Hierarchical contagions in the interdependent financial network," Journal of Financial Stability, Elsevier, vol. 61(C).
    17. Luitgard Anna Maria Veraart, 2020. "Distress and default contagion in financial networks," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 705-737, July.
    18. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    19. Giulio Cimini & Matteo Serri, 2016. "Entangling Credit and Funding Shocks in Interbank Markets," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    20. Tathagata Banerjee & Zachary Feinstein, 2018. "Impact of Contingent Payments on Systemic Risk in Financial Networks," Papers 1805.08544, arXiv.org, revised Dec 2018.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.17836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.