IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.14747.html
   My bibliography  Save this paper

Testing Conditional Stochastic Dominance at Target Points

Author

Listed:
  • Federico A. Bugni
  • Ivan A. Canay
  • Deborah Kim

Abstract

This paper introduces a novel test for conditional stochastic dominance (CSD) at specific values of the conditioning covariates, referred to as target points. The test is relevant for analyzing income inequality, evaluating treatment effects, and studying discrimination. We propose a Kolmogorov--Smirnov-type test statistic that utilizes induced order statistics from independent samples. Notably, the test features a data-independent critical value, eliminating the need for resampling techniques such as the bootstrap. Our approach avoids kernel smoothing and parametric assumptions, instead relying on a tuning parameter to select relevant observations. We establish the asymptotic properties of our test, showing that the induced order statistics converge to independent draws from the true conditional distributions and that the test is asymptotically of level $\alpha$ under weak regularity conditions. While our results apply to both continuous and discrete data, in the discrete case, the critical value only provides a valid upper bound. To address this, we propose a refined critical value that significantly enhances power, requiring only knowledge of the support size of the distributions. Additionally, we analyze the test's behavior in the limit experiment, demonstrating that it reduces to a problem analogous to testing unconditional stochastic dominance in finite samples. This framework allows us to prove the validity of permutation-based tests for stochastic dominance when the random variables are continuous. Monte Carlo simulations confirm the strong finite-sample performance of our method.

Suggested Citation

  • Federico A. Bugni & Ivan A. Canay & Deborah Kim, 2025. "Testing Conditional Stochastic Dominance at Target Points," Papers 2503.14747, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2503.14747
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.14747
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miguel A. Delgado & Juan Carlos Escanciano, 2013. "Conditional Stochastic Dominance Testing," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 16-28, January.
    2. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    3. Kaufmann, E. & Reiss, R. -D., 1992. "On conditional distributions of nearest neighbors," Journal of Multivariate Analysis, Elsevier, vol. 42(1), pages 67-76, July.
    4. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    5. Minsu Chang & Sokbae Lee & Yoon‐Jae Whang, 2015. "Nonparametric tests of conditional treatment effects with an application to single‐sex schooling on academic achievements," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 307-346, October.
    6. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    7. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    8. Bugni, Federico A. & Canay, Ivan A., 2021. "Testing continuity of a density via g-order statistics in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 221(1), pages 138-159.
    9. Ivan A Canay & Magne Mogstad & Jack Mount, 2024. "On the Use of Outcome Tests for Detecting Bias in Decision Making," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(4), pages 2135-2167.
    10. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(3), pages 1577-1608.
    11. Shu Shen, 2019. "Estimation and Inference of Distributional Partial Effects: Theory and Application," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 54-66, January.
    12. Andrews, Donald W.K. & Shi, Xiaoxia, 2017. "Inference based on many conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 196(2), pages 275-287.
    13. Jesus Gonzalo & Jose Olmo, 2014. "Conditional Stochastic Dominance Tests In Dynamic Settings," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 819-838, August.
    14. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    15. Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-1193, September.
    16. Shu Shen & Xiaohan Zhang, 2016. "Distributional Tests for Regression Discontinuity: Theory and Empirical Examples," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 685-700, October.
    17. Jesus Gonzalo & Jose Olmo, 2014. "Conditional Stochastic Dominance Tests In Dynamic Settings," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 819-838, August.
    18. Delgado, Miguel A. & Escanciano, Juan Carlos, 2011. "Conditional stochastic dominance testing," UC3M Working papers. Economics we1138, Universidad Carlos III de Madrid. Departamento de Economía.
    19. Stephen G. Donald & Yu‐Chin Hsu & Garry F. Barrett, 2012. "Incorporating covariates in the measurement of welfare and inequality: methods and applications," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 1-30, February.
    20. Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
    21. Zhongjun Qu & Jungmo Yoon, 2019. "Uniform Inference on Quantile Effects under Sharp Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 625-647, October.
    22. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    23. Prashant Bharadwaj & Rahul Deb & Ludovic Renou, 2024. "Statistical Discrimination and the Distribution of Wages," NBER Working Papers 32562, National Bureau of Economic Research, Inc.
    24. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beare, Brendan K. & Shi, Xiaoxia, 2019. "An improved bootstrap test of density ratio ordering," Econometrics and Statistics, Elsevier, vol. 10(C), pages 9-26.
    2. Jesus Gonzalo & Jose Olmo, 2014. "Conditional Stochastic Dominance Tests In Dynamic Settings," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 819-838, August.
    3. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    4. E. Agliardi & M. Pinar & T. Stengos, 2014. "Assessing temporal trends and industry contributions to air and water pollution using stochastic dominance," Working Papers wp981, Dipartimento Scienze Economiche, Universita' di Bologna.
    5. Ng, Pin & Wong, Wing-Keung & Xiao, Zhijie, 2017. "Stochastic dominance via quantile regression with applications to investigate arbitrage opportunity and market efficiency," European Journal of Operational Research, Elsevier, vol. 261(2), pages 666-678.
    6. Andrews, Donald W.K. & Shi, Xiaoxia, 2017. "Inference based on many conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 196(2), pages 275-287.
    7. Sokbae Lee & Yoon-Jae Whang, 2009. "Nonparametric Tests of Conditional Treatment Effects," Cowles Foundation Discussion Papers 1740, Cowles Foundation for Research in Economics, Yale University.
    8. Rahul Deb & Ludovic Renou, 2022. "Which wage distributions are consistent with statistical discrimination?," Working Papers tecipa-736, University of Toronto, Department of Economics.
    9. Agliardi, Elettra & Agliardi, Rossella & Pinar, Mehmet & Stengos, Thanasis & Topaloglou, Nikolas, 2012. "A new country risk index for emerging markets: A stochastic dominance approach," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 741-761.
    10. Maasoumi, Esfandiar & Almas Heshmati, 2003. "Evaluating Dominance Ranking of PSID Incomes by various Household Attributes," Departmental Working Papers 0509, Southern Methodist University, Department of Economics.
    11. David Lander & David Gunawan & William Griffiths & Duangkamon Chotikapanich, 2020. "Bayesian assessment of Lorenz and stochastic dominance," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 767-799, May.
    12. Marcel Voia, 2008. "A Distributional Analysis Of Treatment Effects In Randomized Experiments," Economics Bulletin, AccessEcon, vol. 3(36), pages 1-9.
    13. Delgado, Miguel A. & Escanciano, Juan Carlos, 2011. "Conditional stochastic dominance testing," UC3M Working papers. Economics we1138, Universidad Carlos III de Madrid. Departamento de Economía.
    14. Lee, Kyungho & Linton, Oliver & Whang, Yoon-Jae, 2023. "Testing for time stochastic dominance," Journal of Econometrics, Elsevier, vol. 235(2), pages 352-371.
    15. Khaled, Mohamad A. & Makdissi, Paul & Yazbeck, Myra, 2018. "Income-related health transfers principles and orderings of joint distributions of income and health," Journal of Health Economics, Elsevier, vol. 57(C), pages 315-331.
    16. David Lander & David Gunawan & William E. Griffiths & Duangkamon Chotikapanich, 2016. "Bayesian Assessment of Lorenz and Stochastic Dominance Using a Mixture of Gamma Densities," Department of Economics - Working Papers Series 2023, The University of Melbourne.
    17. Rami V. Tabri & Mathew J. Elias, 2024. "Testing for Restricted Stochastic Dominance under Survey Nonresponse with Panel Data: Theory and an Evaluation of Poverty in Australia," Papers 2406.15702, arXiv.org.
    18. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2012. "Is there an Optimal Forecast Combination? A Stochastic Dominance Approach to Forecast Combination Puzzle," Working Paper series 17_12, Rimini Centre for Economic Analysis.
    19. Pinar, Mehmet & Stengos, Thanasis & Topaloglou, Nikolas, 2020. "On the construction of a feasible range of multidimensional poverty under benchmark weight uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 415-427.
    20. Mehmet Pinar & Thanasis Stengos & Nikolas Topaloglou, 2022. "Stochastic dominance spanning and augmenting the human development index with institutional quality," Annals of Operations Research, Springer, vol. 315(1), pages 341-369, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.14747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.