IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/20-18.html
   My bibliography  Save this paper

Testing continuity of a density via g -order statistics in the regression discontinuity design

Author

Listed:
  • Federico A. Bugni

    (Institute for Fiscal Studies and Duke University)

  • Ivan A. Canay

    (Institute for Fiscal Studies and Northwestern University)

Abstract

In the regression discontinuity design (RDD), it is common practice to assess the credibility of the design by testing the continuity of the density of the running variable at the cut-off, e.g., McCrary (2008). In this paper we propose a new test for continuity of a density at a point based on the so-called g-order statistics, and study its properties under a novel asymptotic framework. The asymptotic framework is intended to approximate a small sample phenomenon: even though the total number n of observations may be large, the number of effective observations local to the cut-off is often small. Thus, while traditional asymptotics in RDD require a growing number of observations local to the cut-off as n ? 8, our framework allows for the number q of observations local to the cut-off to be fixed as n ? 8. The new test is easy to implement, asymptotically valid under weaker conditions than those used by competing methods, exhibits finite sample validity under stronger conditions than those needed for its asymptotic validity, and has favorable power properties against certain alternatives. In a simulation study, we find that the new test controls size remarkably well across designs. We finally apply our test to the design in Lee (2008), a well-known application of the RDD to study incumbency advantage.

Suggested Citation

  • Federico A. Bugni & Ivan A. Canay, 2018. "Testing continuity of a density via g -order statistics in the regression discontinuity design," CeMMAP working papers CWP20/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:20/18
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/CWP201818.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kaufmann, E. & Reiss, R. -D., 1992. "On conditional distributions of nearest neighbors," Journal of Multivariate Analysis, Elsevier, vol. 42(1), pages 67-76, July.
    2. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    3. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    4. François Gerard & Miikka Rokkanen & Christoph Rothe, 2016. "Bounds on Treatment Effects in Regression Discontinuity Designs with a Manipulated Running Variable," NBER Working Papers 22892, National Bureau of Economic Research, Inc.
    5. McCrary, Justin, 2008. "Manipulation of the running variable in the regression discontinuity design: A density test," Journal of Econometrics, Elsevier, vol. 142(2), pages 698-714, February.
    6. Emmanuel Saez, 2010. "Do Taxpayers Bunch at Kink Points?," American Economic Journal: Economic Policy, American Economic Association, vol. 2(3), pages 180-212, August.
    7. Shu Shen & Xiaohan Zhang, 2016. "Distributional Tests for Regression Discontinuity: Theory and Empirical Examples," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 685-700, October.
    8. Taisuke Otsu & Ke-Li Xu & Yukitoshi Matsushita, 2013. "Estimation and Inference of Discontinuity in Density," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 507-524, October.
    9. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    10. repec:wly:emetrp:v:85:y:2017:i::p:1013-1030 is not listed on IDEAS
    11. Gerard, Francois & Rokkanen, Miikka & Rothe, Christoph, 2016. "Bounds on Treatment Effects in Regression Discontinuity Designs under Manipulation of the Running Variable, with an Application to Unemployment Insurance in Brazil," CEPR Discussion Papers 11668, C.E.P.R. Discussion Papers.
    12. Lee, David S., 2008. "Randomized experiments from non-random selection in U.S. House elections," Journal of Econometrics, Elsevier, vol. 142(2), pages 675-697, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingying DONG & Ying-Ying LEE & Michael GOU, 2019. "Regression Discontinuity Designs with a Continuous Treatment," Discussion papers 19058, Research Institute of Economy, Trade and Industry (RIETI).

    More about this item

    Keywords

    Regression discontinuity design; g-ordered statistics; sign tests; continuity; density;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:20/18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.