IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v221y2021i1p138-159.html
   My bibliography  Save this article

Testing continuity of a density via g-order statistics in the regression discontinuity design

Author

Listed:
  • Bugni, Federico A.
  • Canay, Ivan A.

Abstract

In the regression discontinuity design (RDD), it is common practice to assess the credibility of the design by testing the continuity of the density of the running variable at the cut-off, e.g., McCrary (2008). In this paper we propose an approximate sign test for continuity of a density at a point based on the so-called g-order statistics, and study its properties under two complementary asymptotic frameworks. In the first asymptotic framework, the number q of observations local to the cut-off is fixed as the sample size n diverges to infinity, while in the second framework q diverges to infinity slowly as n diverges to infinity. Under both of these frameworks, we show that the test we propose is asymptotically valid in the sense that it has limiting rejection probability under the null hypothesis not exceeding the nominal level. More importantly, the test is easy to implement, asymptotically valid under weaker conditions than those used by competing methods, and exhibits finite sample validity under stronger conditions than those needed for its asymptotic validity. In a simulation study, we find that the approximate sign test provides good control of the rejection probability under the null hypothesis while remaining competitive under the alternative hypothesis. We finally apply our test to the design in Lee (2008), a well-known application of the RDD to study incumbency advantage.

Suggested Citation

  • Bugni, Federico A. & Canay, Ivan A., 2021. "Testing continuity of a density via g-order statistics in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 221(1), pages 138-159.
  • Handle: RePEc:eee:econom:v:221:y:2021:i:1:p:138-159
    DOI: 10.1016/j.jeconom.2020.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620300579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    2. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    3. Bertanha, Marinho & Moreira, Marcelo J., 2020. "Impossible inference in econometrics: Theory and applications," Journal of Econometrics, Elsevier, vol. 218(2), pages 247-270.
    4. Matias D. Cattaneo & Michael Jansson & Xinwei Ma, 2020. "Simple Local Polynomial Density Estimators," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1449-1455, July.
    5. François Gerard & Miikka Rokkanen & Christoph Rothe, 2020. "Bounds on treatment effects in regression discontinuity designs with a manipulated running variable," Quantitative Economics, Econometric Society, vol. 11(3), pages 839-870, July.
    6. Emmanuel Saez, 2010. "Do Taxpayers Bunch at Kink Points?," American Economic Journal: Economic Policy, American Economic Association, vol. 2(3), pages 180-212, August.
    7. Shu Shen & Xiaohan Zhang, 2016. "Distributional Tests for Regression Discontinuity: Theory and Empirical Examples," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 685-700, October.
    8. Taisuke Otsu & Ke-Li Xu & Yukitoshi Matsushita, 2013. "Estimation and Inference of Discontinuity in Density," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 507-524, October.
    9. Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
    10. Brigham R. Frandsen, 2017. "Party Bias in Union Representation Elections: Testing for Manipulation in the Regression Discontinuity Design when the Running Variable is Discrete," Advances in Econometrics, in: Matias D. Cattaneo & Juan Carlos Escanciano (ed.), Regression Discontinuity Designs, volume 38, pages 281-315, Emerald Publishing Ltd.
    11. Gerard, Francois & Rokkanen, Miikka & Rothe, Christoph, 2016. "Bounds on Treatment Effects in Regression Discontinuity Designs under Manipulation of the Running Variable, with an Application to Unemployment Insurance in Brazil," CEPR Discussion Papers 11668, C.E.P.R. Discussion Papers.
    12. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," Review of Economic Studies, Oxford University Press, vol. 85(3), pages 1577-1608.
    13. Lee, David S., 2008. "Randomized experiments from non-random selection in U.S. House elections," Journal of Econometrics, Elsevier, vol. 142(2), pages 675-697, February.
    14. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    15. Matias D. Cattaneo & Roc ́ıo Titiunik & Gonzalo Vazquez-Bare, 2016. "Inference in regression discontinuity designs under local randomization," Stata Journal, StataCorp LP, vol. 16(2), pages 331-367, June.
    16. Kaufmann, E. & Reiss, R. -D., 1992. "On conditional distributions of nearest neighbors," Journal of Multivariate Analysis, Elsevier, vol. 42(1), pages 67-76, July.
    17. McCrary, Justin, 2008. "Manipulation of the running variable in the regression discontinuity design: A density test," Journal of Econometrics, Elsevier, vol. 142(2), pages 698-714, February.
    18. Burt S. Barnow & Matias D. Cattaneo & Rocío Titiunik & Gonzalo Vazquez‐Bare, 2017. "Comparing Inference Approaches for RD Designs: A Reexamination of the Effect of Head Start on Child Mortality," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 36(3), pages 643-681, June.
    19. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    20. Timothy B. Armstrong & Michal Kolesár, 2020. "Simple and honest confidence intervals in nonparametric regression," Quantitative Economics, Econometric Society, vol. 11(1), pages 1-39, January.
    21. Gonzalo Vazquez-Bare & Matias Cattaneo & Rocio Titiunik, 2016. "rdlocrand: a Stata Package for Inference in Regression Discontinuity Designs under Local Randomizati," 2016 Stata Conference 25, Stata Users Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingying DONG & Ying-Ying LEE & Michael GOU, 2019. "Regression Discontinuity Designs with a Continuous Treatment," Discussion papers 19058, Research Institute of Economy, Trade and Industry (RIETI).
    2. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    2. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," Review of Economic Studies, Oxford University Press, vol. 85(3), pages 1577-1608.
    3. Ari Hyytinen & Jaakko Meriläinen & Tuukka Saarimaa & Otto Toivanen & Janne Tukiainen, 2018. "When does regression discontinuity design work? Evidence from random election outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 1019-1051, July.
    4. Bertanha, Marinho & Moreira, Marcelo J., 2020. "Impossible inference in econometrics: Theory and applications," Journal of Econometrics, Elsevier, vol. 218(2), pages 247-270.
    5. Crespo Cristian, 2020. "Beyond Manipulation: Administrative Sorting in Regression Discontinuity Designs," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 164-181, January.
    6. Crespo Cristian, 2020. "Beyond Manipulation: Administrative Sorting in Regression Discontinuity Designs," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 164-181, January.
    7. Onda, Masayuki & Seyler, Edward, 2020. "English learners reclassification and academic achievement: Evidence from Minnesota," Economics of Education Review, Elsevier, vol. 79(C).
    8. Cappelletti, Giuseppe & Ponte Marques, Aurea & Varraso, Paolo & Budrys, Žymantas & Peeters, Jonas, 2019. "Impact of higher capital buffers on banks’ lending and risk-taking: evidence from the euro area experiments," Working Paper Series 2292, European Central Bank.
    9. Slotwinski, Michaela & Schmidheiny, Kurt, 2014. "Behavioral Responses to Local Tax Rates: Quasi-Experimental Evidence from a Foreigners Tax Scheme in Switzerland," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100292, Verein für Socialpolitik / German Economic Association.
    10. Christopher Erwin, 2019. "Low-performing student responses to state merit scholarships," Working Papers 2019-02, Auckland University of Technology, Department of Economics.
    11. Jun Ma & Zhengfei Yu, 2020. "Coverage Optimal Empirical Likelihood Inference for Regression Discontinuity Design," Papers 2008.09263, arXiv.org.
    12. Sander Gerritsen & Dinand Webbink & Bas Weel, 2017. "Sorting Around the Discontinuity Threshold: The Case of a Neighbourhood Investment Programme," De Economist, Springer, vol. 165(1), pages 101-128, March.
    13. Guido Imbens & Stefan Wager, 2019. "Optimized Regression Discontinuity Designs," The Review of Economics and Statistics, MIT Press, vol. 101(2), pages 264-278, May.
    14. Nguyen, Thach Vu Hong & Ahmed, Shamim & Chevapatrakul, Thanaset & Onali, Enrico, 2020. "Do stress tests affect bank liquidity creation?," Journal of Corporate Finance, Elsevier, vol. 64(C).
    15. Schmidheiny, Kurt & Slotwinski, Michaela, 2018. "Tax-induced mobility: Evidence from a foreigners' tax scheme in Switzerland," Journal of Public Economics, Elsevier, vol. 167(C), pages 293-324.
    16. Eibich, Peter & Siedler, Thomas, 2020. "Retirement, intergenerational time transfers, and fertility," European Economic Review, Elsevier, vol. 124(C).
    17. Dong, Yingying, 2010. "Jumpy or Kinky? Regression Discontinuity without the Discontinuity," MPRA Paper 25461, University Library of Munich, Germany.
    18. Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
    19. Angelo D'Andrea, 2019. "Mayor’s wage and Public procurement," BAFFI CAREFIN Working Papers 19125, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    20. Vergolini, Loris & Zanini, Nadir, 2015. "Away, but not too far from home. The effects of financial aid on university enrolment decisions," Economics of Education Review, Elsevier, vol. 49(C), pages 91-109.

    More about this item

    Keywords

    Regression discontinuity design; g-ordered statistics; Sign tests; Continuity; Density;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:221:y:2021:i:1:p:138-159. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.