IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Estimation and Inference of Discontinuity in Density

Listed author(s):
  • Taisuke Otsu
  • Ke-Li Xu
  • Yukitoshi Matsushita

Continuity or discontinuity of probability density functions of data often plays a fundamental role in empirical economic analysis. For example, for identification and inference of causal effects in regression discontinuity designs it is typically assumed that the density function of a conditioning variable is continuous at a cutoff point that determines assignment of a treatment. Also, discontinuity in density functions can be a parameter of economic interest, such as in analysis of bunching behaviors of taxpayers. To facilitate researchers to conduct valid inference for these problems, this article extends the binning and local likelihood approaches to estimate discontinuity of density functions and proposes empirical likelihood-based tests and confidence sets for the discontinuity. In contrast to the conventional Wald-type test and confidence set using the binning estimator, our empirical likelihood-based methods (i) circumvent asymptotic variance estimation to construct the test statistics and confidence sets; (ii) are invariant to nonlinear transformations of the parameters of interest; (iii) offer confidence sets whose shapes are automatically determined by data; and (iv) admit higher-order refinements, so-called Bartlett corrections. First- and second-order asymptotic theories are developed. Simulations demonstrate the superior finite sample behaviors of the proposed methods. In an empirical application, we assess the identifying assumption of no manipulation of class sizes in the regression discontinuity design studied by Angrist and Lavy (1999).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Journal of Business & Economic Statistics.

Volume (Year): 31 (2013)
Issue (Month): 4 (October)
Pages: 507-524

in new window

Handle: RePEc:taf:jnlbes:v:31:y:2013:i:4:p:507-524
DOI: 10.1080/07350015.2013.818007
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:31:y:2013:i:4:p:507-524. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.