IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/we1205.html
   My bibliography  Save this paper

Conditional stochastic dominance tests in dynamic settings

Author

Listed:
  • Gonzalo, Jesús
  • Olmo, José

Abstract

This paper proposes nonparametric consistent tests of conditional stochastic dominance of arbitrary order in a dynamic setting. The novelty of these tests lies in the nonparametric manner of incorporating the information set. The test allows for general forms of unknown serial and mutual dependence between random variables, and has an asymptotic distribution that can be easily approximated by simulation. This method has good finite-sample performance. These tests are applied to determine investment efficiency between US industry portfolios conditional on the dynamics of the market portfolio. The empirical analysis suggests that Telecommunications dominates the other sectoral portfolios under risk aversion.

Suggested Citation

  • Gonzalo, Jesús & Olmo, José, 2013. "Conditional stochastic dominance tests in dynamic settings," UC3M Working papers. Economics we1205, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:we1205
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/13686/we1205.pdf?sequence=1
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Miguel A. Delgado & Juan Carlos Escanciano, 2013. "Conditional Stochastic Dominance Testing," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 16-28, January.
    2. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    3. Scaillet, Olivier & Topaloglou, Nikolas, 2010. "Testing for Stochastic Dominance Efficiency," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 169-180.
    4. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355.
    5. Kaur, Amarjot & Prakasa Rao, B.L.S. & Singh, Harshinder, 1994. "Testing for Second-Order Stochastic Dominance of Two Distributions," Econometric Theory, Cambridge University Press, vol. 10(05), pages 849-866, December.
    6. Delgado, Miguel A. & Carlos Escanciano, J., 2007. "Nonparametric tests for conditional symmetry in dynamic models," Journal of Econometrics, Elsevier, vol. 141(2), pages 652-682, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olmo, José & Sanso-Navarro, Marcos, 2012. "Forecasting the performance of hedge fund styles," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2351-2365.
    2. E. Agliardi & M. Pinar & T. Stengos, 2014. "Assessing temporal trends and industry contributions to air and water pollution using stochastic dominance," Working Papers wp981, Dipartimento Scienze Economiche, Universita' di Bologna.
    3. Stelios Arvanitis & Nikolas Topaloglou, 2015. "Consistent tests for risk seeking behavior: A stochastic dominance approach Abstract We develop non-parametric tests for prospect stochastic dominance Efficiency (PSDE) and Markowitz stochastic domina," Working Papers 201511, Athens University Of Economics and Business, Department of Economics.
    4. repec:eee:ejores:v:261:y:2017:i:2:p:666-678 is not listed on IDEAS
    5. Agliardi, Elettra & Agliardi, Rossella & Pinar, Mehmet & Stengos, Thanasis & Topaloglou, Nikolas, 2012. "A new country risk index for emerging markets: A stochastic dominance approach," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 741-761.
    6. repec:eee:econom:v:198:y:2017:i:2:p:253-270 is not listed on IDEAS

    More about this item

    Keywords

    Hypothesis testing;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:we1205. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://www.eco.uc3m.es/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.