IDEAS home Printed from
   My bibliography  Save this paper

Testing Stochastic Dominance with Many Conditioning Variables


  • Linton, O.
  • Seo, M.
  • Whang, Y-J.


We propose a test of the hypothesis of conditional stochastic dominance in the presence of many conditioning variables (whose dimension may grow to infinity as the sample size diverges). Our approach builds on a semiparametric location scale model in the sense that the conditional distribution of the outcome given the covariates is characterized by a nonparametric mean function and a nonparametric skedastic function with an independent innovation whose distribution is unknown. We propose to estimate the nonparametric mean and skedastic regression functions by the `1-penalized nonparametric series estimation with thresholding. Under the sparsity assumption, where the number of truly relevant series terms are relatively small (but their identities are unknown), we develop the estimation error bounds for the regression functions and series coefficients estimates allowing for the time series dependence. We derive the asymptotic distribution of the test statistic, which is not pivotal asymptotically, and introduce the smooth stationary bootstrap to approximate its sample distribution. We investigate the finite sample performance of the bootstrap critical values by a set of Monte Carlo simulations. Finally, our method is illustrated by an application to stochastic dominance among portfolio returns given all the past information.

Suggested Citation

  • Linton, O. & Seo, M. & Whang, Y-J., 2020. "Testing Stochastic Dominance with Many Conditioning Variables," Cambridge Working Papers in Economics 2004, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:2004
    Note: obl20

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Anton Schick & Wolfgang Wefelmeyer, 2002. "Estimating the Innovation Distribution in Nonlinear Autoregressive Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 245-260, June.
    4. Jesus Gonzalo & Jose Olmo, 2014. "Conditional Stochastic Dominance Tests In Dynamic Settings," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 819-838, August.
    5. Michael G. Akritas & Ingrid Van Keilegom, 2001. "Non‐parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567, September.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Bootstrap; Empirical process; Home bias; LASSO; Power boosting; Sparsity;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jake Dyer). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.