IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/-589.html
   My bibliography  Save this paper

Local M-estimation with discontinuous criterion for dependent and limited observations

Author

Listed:
  • Myung Hwan Seo
  • Taisuke Otsu

Abstract

This paper examines asymptotic properties of local M-estimators under three sets of high-level conditions. These conditions are sufficiently general to cover the minimum volume predictive region, conditional maximum score estimator for a panel data discrete choice model, and many other widely used estimators in statistics and econometrics. Specifically, they allow for discontinuous criterion functions of weakly dependent observations, which may be localized by kernel smoothing and contain nuisance parameters whose dimension may grow to infinity. Furthermore, the localization can occur around parameter values rather than around a fixed point and the observation may take limited values, which leads to set estimators. Our theory produces three different nonparametric cube root rates and enables valid inference for the local M-estimators, building on novel maximal inequalities for weakly dependent data. Our results include the standard cube root asymptotics as a special case. To illustrate the usefulness of our results, we verify our conditions for various examples such as the Hough transform estimator with diminishing bandwidth, maximum score-type set estimator, and many others.

Suggested Citation

  • Myung Hwan Seo & Taisuke Otsu, 2016. "Local M-estimation with discontinuous criterion for dependent and limited observations," STICERD - Econometrics Paper Series /589, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:/589
    as

    Download full text from publisher

    File URL: http://sticerd.lse.ac.uk/dps/em/em589.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lee, Myoung-jae, 1989. "Mode regression," Journal of Econometrics, Elsevier, vol. 42(3), pages 337-349, November.
    2. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    3. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    4. Polonik, Wolfgang & Yao, Qiwei, 2000. "Conditional minimum volume predictive regions for stochastic processes," LSE Research Online Documents on Economics 6311, London School of Economics and Political Science, LSE Library.
    5. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    6. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    7. Nobel, Andrew & Dembo, Amir, 1993. "A note on uniform laws of averages for dependent processes," Statistics & Probability Letters, Elsevier, vol. 17(3), pages 169-172, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Cube root asymptotics; Maximal inequality; Mixing process; Partial identification; Parameter-dependent localization;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:/589. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://sticerd.lse.ac.uk/_new/publications/default.asp .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.