IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v36y2012i8p2351-2365.html
   My bibliography  Save this article

Forecasting the performance of hedge fund styles

Author

Listed:
  • Olmo, José
  • Sanso-Navarro, Marcos

Abstract

This article predicts the relative performance of hedge fund investment styles using time-varying conditional stochastic dominance tests. These tests allow for the construction of dynamic trading strategies based on nonparametric density forecasts of hedge fund returns. During the recent financial turmoil, our tests predict a superior performance for the Global Macro investment style compared with the other strategies of ‘Directional Traders’. The Dedicated Short Bias investment style is stochastically dominated by the other directional styles. These results are confirmed by simple nonparametric tests constructed from realized excess returns. Further, by utilizing a cross-validation method for optimal bandwidth parameter selection, we discover the factors that have predictive power regarding the density of hedge fund returns. We observe that different factors have forecasting power for different regions of the returns distribution and, more importantly, that the Fung and Hsieh factors have power not only for describing the risk premium but also, if appropriately exploited, for density forecasting.

Suggested Citation

  • Olmo, José & Sanso-Navarro, Marcos, 2012. "Forecasting the performance of hedge fund styles," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2351-2365.
  • Handle: RePEc:eee:jbfina:v:36:y:2012:i:8:p:2351-2365
    DOI: 10.1016/j.jbankfin.2012.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426612001148
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jesus Gonzalo & Jose Olmo, 2014. "Conditional Stochastic Dominance Tests In Dynamic Settings," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 819-838, August.
    2. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    3. Agarwal, Vikas & Daniel, Naveen D. & Naik, Narayan Y., 2009. "Role of managerial incentives and discretion in hedge fund performance," CFR Working Papers 04-04, University of Cologne, Centre for Financial Research (CFR).
    4. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    5. Abhay Abhyankar & Keng-Yu Ho & Huainan Zhao, 2008. "Value versus growth: stochastic dominance criteria," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 693-704.
    6. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    7. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    8. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    9. Meligkotsidou, Loukia & Vrontos, Ioannis D. & Vrontos, Spyridon D., 2009. "Quantile regression analysis of hedge fund strategies," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 264-279, March.
    10. Stone, Bernell K, 1973. "A General Class of Three-Parameter Risk Measures," Journal of Finance, American Finance Association, vol. 28(3), pages 675-685, June.
    11. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 735-765.
    12. Bali, Turan G. & Brown, Stephen J. & Caglayan, Mustafa Onur, 2011. "Do hedge funds' exposures to risk factors predict their future returns?," Journal of Financial Economics, Elsevier, vol. 101(1), pages 36-68, July.
    13. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    14. Ioannis Vrontos, 2012. "Evidence for hedge fund predictability from a multivariate Student's t full-factor GARCH model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1295-1321, November.
    15. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    16. Vikas Agarwal & Naveen D. Daniel & Narayan Y. Naik, 2009. "Role of Managerial Incentives and Discretion in Hedge Fund Performance," Journal of Finance, American Finance Association, vol. 64(5), pages 2221-2256, October.
    17. Wegener, Christian & von Nitzsch, Rüdiger & Cengiz, Cetin, 2010. "An advanced perspective on the predictability in hedge fund returns," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2694-2708, November.
    18. Giannikis, Dimitrios & Vrontos, Ioannis D., 2011. "A Bayesian approach to detecting nonlinear risk exposures in hedge fund strategies," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1399-1414, June.
    19. Fong, Wai Mun & Wong, Wing Keung & Lean, Hooi Hooi, 2005. "International momentum strategies: a stochastic dominance approach," Journal of Financial Markets, Elsevier, vol. 8(1), pages 89-109, February.
    20. Barberis, Nicholas & Shleifer, Andrei, 2003. "Style investing," Journal of Financial Economics, Elsevier, vol. 68(2), pages 161-199, May.
    21. Fung, William & Hsieh, David A, 2001. "The Risk in Hedge Fund Strategies: Theory and Evidence from Trend Followers," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 313-341.
    22. Horst, Jenke ter & Salganik, Galla, 2014. "Style chasing by hedge fund investors," Journal of Banking & Finance, Elsevier, vol. 39(C), pages 29-42.
    23. Avramov, Doron & Kosowski, Robert & Naik, Narayan Y. & Teo, Melvyn, 2011. "Hedge funds, managerial skill, and macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 99(3), pages 672-692, March.
    24. repec:hrv:faseco:30747193 is not listed on IDEAS
    25. Heidorn, Thomas & Kaiser, Dieter G. & Voinea, Andre, 2010. "The value-added of investable hedge fund indices," Frankfurt School - Working Paper Series 141, Frankfurt School of Finance and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    2. repec:eee:ecofin:v:43:y:2018:i:c:p:129-140 is not listed on IDEAS

    More about this item

    Keywords

    Conditional density estimation; Hedge fund styles; Nonparametric methods; Portfolio performance; Stochastic dominance tests;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:36:y:2012:i:8:p:2351-2365. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.