IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1909.12592.html
   My bibliography  Save this paper

Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions

Author

Listed:
  • Jau-er Chen
  • Chien-Hsun Huang
  • Jia-Jyun Tien

Abstract

In this study, we investigate estimation and inference on a low-dimensional causal parameter in the presence of high-dimensional controls in an instrumental variable quantile regression. Our proposed econometric procedure builds on the Neyman-type orthogonal moment conditions of a previous study Chernozhukov, Hansen and Wuthrich (2018) and is thus relatively insensitive to the estimation of the nuisance parameters. The Monte Carlo experiments show that the estimator copes well with high-dimensional controls. We also apply the procedure to empirically reinvestigate the quantile treatment effect of 401(k) participation on accumulated wealth.

Suggested Citation

  • Jau-er Chen & Chien-Hsun Huang & Jia-Jyun Tien, 2019. "Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions," Papers 1909.12592, arXiv.org, revised Feb 2021.
  • Handle: RePEc:arx:papers:1909.12592
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1909.12592
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    2. Le‐Yu Chen & Sokbae Lee, 2018. "Exact computation of GMM estimators for instrumental variable quantile regression models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 553-567, June.
    3. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    4. Jau-er Chen & Chen-Wei Hsiang, 2019. "Causal Random Forests Model Using Instrumental Variable Quantile Regression," Econometrics, MDPI, vol. 7(4), pages 1-22, December.
    5. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    6. Duncan Sheppard Gilchrist & Emily Glassberg Sands, 2016. "Something to Talk About: Social Spillovers in Movie Consumption," Journal of Political Economy, University of Chicago Press, vol. 124(5), pages 1339-1382.
    7. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    8. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    9. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    10. Victor Chernozhukov & Christian Hansen, 2004. "The Effects of 401(K) Participation on the Wealth Distribution: An Instrumental Quantile Regression Analysis," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 735-751, August.
    11. Chiou, Yan-Yu & Chen, Mei-Yuan & Chen, Jau-er, 2018. "Nonparametric regression with multiple thresholds: Estimation and inference," Journal of Econometrics, Elsevier, vol. 206(2), pages 472-514.
    12. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    13. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    14. Yan-Yu Chiou & Mei-Yuan Chen & Jau-er Chen, 2017. "Nonparametric Regression with Multiple Thresholds: Estimation and Inference," Papers 1705.09418, arXiv.org, revised Feb 2018.
    15. Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jau-er Chen & Chen-Wei Hsiang, 2019. "Causal Random Forests Model Using Instrumental Variable Quantile Regression," Econometrics, MDPI, vol. 7(4), pages 1-22, December.
    2. Seoyun Hong, 2023. "Censored Quantile Regression with Many Controls," Papers 2303.02784, arXiv.org.
    3. Jonathan Fuhr & Philipp Berens & Dominik Papies, 2024. "Estimating Causal Effects with Double Machine Learning -- A Method Evaluation," Papers 2403.14385, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jau-er Chen & Chen-Wei Hsiang, 2019. "Causal Random Forests Model Using Instrumental Variable Quantile Regression," Econometrics, MDPI, vol. 7(4), pages 1-22, December.
    2. Hiroaki Kaido & Kaspar Wüthrich, 2021. "Decentralization estimators for instrumental variable quantile regression models," Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
    3. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
    4. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    5. Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
    6. Javier Alejo & Antonio F Galvao & Gabriel Montes-Rojas, 2023. "A first-stage representation for instrumental variables quantile regression," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 350-377.
    7. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    8. Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Economics Working Paper Series 2108, University of St. Gallen, School of Economics and Political Science.
    9. Bola Amoke Awotide & Adebayo Ogunniyi & Kehinde Oluseyi Olagunju & Lateef Olalekan Bello & Amadou Youssouf Coulibaly & Alexander Nimo Wiredu & Bourémo Kone & Aly Ahamadou & Victor Manyong & Tahirou Ab, 2022. "Evaluating the Heterogeneous Impacts of Adoption of Climate-Smart Agricultural Technologies on Rural Households’ Welfare in Mali," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
    10. Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
    11. Yinchu Zhu, 2018. "Learning non-smooth models: instrumental variable quantile regressions and related problems," Papers 1805.06855, arXiv.org, revised Sep 2019.
    12. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    13. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    14. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    15. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    16. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    17. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    18. Xin Liu, 2019. "Averaging estimation for instrumental variables quantile regression," Working Papers 1907, Department of Economics, University of Missouri.
    19. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    20. Christina Christou & Ruthira Naraidoo & Rangan Gupta & Won Joong Kim, 2018. "Monetary Policy Reaction Functions of the TICKs: A Quantile Regression Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(15), pages 3552-3565, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.12592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.