IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/30600.html
   My bibliography  Save this paper

Modeling Machine Learning: A Cognitive Economic Approach

Author

Listed:
  • Andrew Caplin
  • Daniel J. Martin
  • Philip Marx

Abstract

We apply methodological innovations from cognitive economics that were designed to study human cognition to instead better understand machine learning. We first show that the folk theory of machine learning – that an algorithms learns optimally to minimize the loss function used in training – rests on a shaky foundation. We then identify a path forward by translating ideas from the costly learning branch of cognitive economics. We find that changes in the loss function impact learning just as they might if the algorithm was a rational human being who found learning costly according to a revealed pseudo-cost function that may or may not correspond to actual resource costs. Our approach can be leveraged to determine more effective loss functions given a third party’s objective, be it a firm or a policy maker.

Suggested Citation

  • Andrew Caplin & Daniel J. Martin & Philip Marx, 2022. "Modeling Machine Learning: A Cognitive Economic Approach," NBER Working Papers 30600, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:30600
    Note: TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w30600.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023. "The emergence of economic rationality of GPT," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(51), pages 2316205120-, December.
    2. Varian, Hal R, 1982. "The Nonparametric Approach to Demand Analysis," Econometrica, Econometric Society, vol. 50(4), pages 945-973, July.
    3. Dirk Bergemann & Stephen Morris, 2019. "Information Design: A Unified Perspective," Journal of Economic Literature, American Economic Association, vol. 57(1), pages 44-95, March.
    4. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    5. Carlos Alós-Ferrer & Ernst Fehr & Nick Netzer, 2021. "Time Will Tell: Recovering Preferences When Choices Are Noisy," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1828-1877.
    6. Larry Samuelson & Jakub Steiner, 2024. "Constrained data-fitters," ECON - Working Papers 460, Department of Economics - University of Zurich.
    7. Emir Kamenica & Matthew Gentzkow, 2011. "Bayesian Persuasion," American Economic Review, American Economic Association, vol. 101(6), pages 2590-2615, October.
    8. Paola Manzini & Marco Mariotti, 2014. "Stochastic Choice and Consideration Sets," Econometrica, Econometric Society, vol. 82(3), pages 1153-1176, May.
    9. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    10. Filip Matêjka & Alisdair McKay, 2015. "Rational Inattention to Discrete Choices: A New Foundation for the Multinomial Logit Model," American Economic Review, American Economic Association, vol. 105(1), pages 272-298, January.
    11. James E. Archsmith & Anthony Heyes & Matthew J. Neidell & Bhaven N. Sampat, 2021. "The Dynamics of Inattention in the (Baseball) Field," NBER Working Papers 28922, National Bureau of Economic Research, Inc.
    12. repec:cdl:ucsdec:qt34m788c3 is not listed on IDEAS
    13. Drew Fudenberg & Annie Liang, 2019. "Predicting and Understanding Initial Play," American Economic Review, American Economic Association, vol. 109(12), pages 4112-4141, December.
    14. Andrew Caplin & Daniel Martin & Philip Marx, 2025. "Rationalizable learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 80(1), pages 171-202, August.
    15. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    16. Andrew Caplin & Mark Dean & John Leahy, 2022. "Rationally Inattentive Behavior: Characterizing and Generalizing Shannon Entropy," Journal of Political Economy, University of Chicago Press, vol. 130(6), pages 1676-1715.
    17. Andrew Caplin & Daniel Martin, 2015. "A Testable Theory of Imperfect Perception," Economic Journal, Royal Economic Society, vol. 125(582), pages 184-202, February.
    18. Benjamin Hébert & Michael Woodford, 2017. "Rational Inattention and Sequential Information Sampling," NBER Working Papers 23787, National Bureau of Economic Research, Inc.
    19. Guy Aridor & Rava Azeredo da Silveira & Michael Woodford, 2024. "Information-Constrained Coordination of Economic Behavior," NBER Working Papers 32113, National Bureau of Economic Research, Inc.
    20. Hebert, Benjamin & Woodford, Michael, 2017. "Rational Inattention with Sequential Information Sampling," Research Papers repec:ecl:stabus:3457, Stanford University, Graduate School of Business.
    21. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    22. Drew Fudenberg & Jon Kleinberg & Annie Liang & Sendhil Mullainathan, 2022. "Measuring the Completeness of Economic Models," Journal of Political Economy, University of Chicago Press, vol. 130(4), pages 956-990.
    23. Bergemann, Dirk & Morris, Stephen, 2016. "Bayes correlated equilibrium and the comparison of information structures in games," Theoretical Economics, Econometric Society, vol. 11(2), May.
    24. Emir Kamenica, 2019. "Bayesian Persuasion and Information Design," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 249-272, August.
    25. Andrew Caplin & Mark Dean, 2015. "Revealed Preference, Rational Inattention, and Costly Information Acquisition," American Economic Review, American Economic Association, vol. 105(7), pages 2183-2203, July.
    26. de Oliveira, Henrique & Denti, Tommaso & Mihm, Maximilian & Ozbek, Kemal, 2017. "Rationally inattentive preferences and hidden information costs," Theoretical Economics, Econometric Society, vol. 12(2), May.
    27. Matias D. Cattaneo & Xinwei Ma & Yusufcan Masatlioglu & Elchin Suleymanov, 2020. "A Random Attention Model," Journal of Political Economy, University of Chicago Press, vol. 128(7), pages 2796-2836.
      • Matias D. Cattaneo & Xinwei Ma & Yusufcan Masatlioglu & Elchin Suleymanov, 2017. "A Random Attention Model," Papers 1712.03448, arXiv.org, revised Aug 2019.
    28. Guy Aridor & Rava Azeredo da Silveira & Michael Woodford, 2024. "Information-Constrained Coordination of Economic Behavior," CESifo Working Paper Series 10935, CESifo.
    29. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    30. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    31. Nikhil Agarwal & Alex Moehring & Pranav Rajpurkar & Tobias Salz, 2023. "Combining Human Expertise with Artificial Intelligence: Experimental Evidence from Radiology," NBER Working Papers 31422, National Bureau of Economic Research, Inc.
    32. Tommaso Denti, 2022. "Posterior Separable Cost of Information," American Economic Review, American Economic Association, vol. 112(10), pages 3215-3259, October.
    33. Pranav Rajpurkar & Jeremy Irvin & Robyn L Ball & Kaylie Zhu & Brandon Yang & Hershel Mehta & Tony Duan & Daisy Ding & Aarti Bagul & Curtis P Langlotz & Bhavik N Patel & Kristen W Yeom & Katie Shpanska, 2018. "Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-17, November.
    34. repec:hal:pseose:halshs-01155313 is not listed on IDEAS
    35. Michael Woodford, 2014. "Stochastic Choice: An Optimizing Neuroeconomic Model," American Economic Review, American Economic Association, vol. 104(5), pages 495-500, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose Ramon Saura & Rita Bužinskienė, 2025. "Behavioral economics, artificial intelligence and entrepreneurship: an updated framework for management," International Entrepreneurship and Management Journal, Springer, vol. 21(1), pages 1-33, December.
    2. Ke, Shaowei & Zhao, Chen, 2024. "From local utility to neural networks," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    3. Naudé, Wim, 2023. "Artificial Intelligence and the Economics of Decision-Making," IZA Discussion Papers 16000, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Maćkowiak & Filip Matějka & Mirko Wiederholt, 2023. "Rational Inattention: A Review," Journal of Economic Literature, American Economic Association, vol. 61(1), pages 226-273, March.
    2. David Walker-Jones, 2019. "Rational Inattention and Perceptual Distance," Papers 1909.00888, arXiv.org, revised Dec 2019.
    3. Matějka, Filip & Mackowiak, Bartosz & Wiederholt, Mirko, 2018. "Survey: Rational Inattention, a Disciplined Behavioral Model," CEPR Discussion Papers 13243, C.E.P.R. Discussion Papers.
    4. Jianjun Miao & Hao Xing, 2024. "Dynamic discrete choice under rational inattention," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 77(3), pages 597-652, May.
    5. Monte, Daniel & Linhares, Luis Henrique, 2023. "Stealth Startups, Clauses, and Add-ons: A Model of Strategic Obfuscation," MPRA Paper 115926, University Library of Munich, Germany.
    6. Duffy, Sean & Gussman, Steven & Smith, John, 2021. "Visual judgments of length in the economics laboratory: Are there brains in stochastic choice?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 93(C).
    7. Gualdani, Cristina & Sinha, Shruti, 2024. "Identification in discrete choice models with imperfect information," Journal of Econometrics, Elsevier, vol. 244(1).
    8. Tsakas, Elias, 2018. "Robust scoring rules," Research Memorandum 023, Maastricht University, Graduate School of Business and Economics (GSBE).
    9. Duffy, Sean & Smith, John, 2020. "An economist and a psychologist form a line: What can imperfect perception of length tell us about stochastic choice?," MPRA Paper 99417, University Library of Munich, Germany.
    10. Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints [On interim rationality, belief formation and learning in decision problems with bounded memory]," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1753-1781.
    11. Tommaso Denti & Doron Ravid, 2023. "Robust Predictions in Games with Rational Inattention," Papers 2306.09964, arXiv.org.
    12. Hébert, Benjamin & Woodford, Michael, 2023. "Rational inattention when decisions take time," Journal of Economic Theory, Elsevier, vol. 208(C).
    13. Mogens Fosgerau & Emerson Melo & André de Palma & Matthew Shum, 2020. "Discrete Choice And Rational Inattention: A General Equivalence Result," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 61(4), pages 1569-1589, November.
    14. Cristina Gualdani & Shruti Sinha, 2019. "Identification in discrete choice models with imperfect information," Papers 1911.04529, arXiv.org, revised Dec 2023.
    15. Andrew Caplin & Mark Dean & John Leahy, 2022. "Rationally Inattentive Behavior: Characterizing and Generalizing Shannon Entropy," Journal of Political Economy, University of Chicago Press, vol. 130(6), pages 1676-1715.
    16. Matysková, Ludmila & Montes, Alfonso, 2023. "Bayesian persuasion with costly information acquisition," Journal of Economic Theory, Elsevier, vol. 211(C).
    17. Wang, Han, 2025. "Contracting with heterogeneous researchers," Games and Economic Behavior, Elsevier, vol. 150(C), pages 278-294.
    18. Luciano Pomatto & Philipp Strack & Omer Tamuz, 2018. "The Cost of Information: The Case of Constant Marginal Costs," Papers 1812.04211, arXiv.org, revised Feb 2023.
    19. Li, Anqi & Hu, Lin, 2023. "Electoral accountability and selection with personalized information aggregation," Games and Economic Behavior, Elsevier, vol. 140(C), pages 296-315.
    20. Andrew Caplin & Dániel CsabaQuantCo & John Leahy & Oded Nov, 2020. "Rational Inattention, Competitive Supply, and Psychometrics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(3), pages 1681-1724.

    More about this item

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:30600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.