IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1804.01208.html
   My bibliography  Save this paper

Should We Adjust for the Test for Pre-trends in Difference-in-Difference Designs?

Author

Listed:
  • Jonathan Roth

Abstract

The common practice in difference-in-difference (DiD) designs is to check for parallel trends prior to treatment assignment, yet typical estimation and inference does not account for the fact that this test has occurred. I analyze the properties of the traditional DiD estimator conditional on having passed (i.e. not rejected) the test for parallel pre-trends. When the DiD design is valid and the test for pre-trends confirms it, the typical DiD estimator is unbiased, but traditional standard errors are overly conservative. Additionally, there exists an alternative unbiased estimator that is more efficient than the traditional DiD estimator under parallel trends. However, when in population there is a non-zero pre-trend but we fail to reject the hypothesis of parallel pre-trends, the DiD estimator is generally biased relative to the population DiD coefficient. Moreover, if the trend is monotone, then under reasonable assumptions the bias from conditioning exacerbates the bias relative to the true treatment effect. I propose new estimation and inference procedures that account for the test for parallel trends, and compare their performance to that of the traditional estimator in a Monte Carlo simulation.

Suggested Citation

  • Jonathan Roth, 2018. "Should We Adjust for the Test for Pre-trends in Difference-in-Difference Designs?," Papers 1804.01208, arXiv.org, revised May 2018.
  • Handle: RePEc:arx:papers:1804.01208
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1804.01208
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abel Brodeur & Mathias Lé & Marc Sangnier & Yanos Zylberberg, 2016. "Star Wars: The Empirics Strike Back," American Economic Journal: Applied Economics, American Economic Association, vol. 8(1), pages 1-32, January.
    2. Garret Christensen & Edward Miguel, 2018. "Transparency, Reproducibility, and the Credibility of Economics Research," Journal of Economic Literature, American Economic Association, vol. 56(3), pages 920-980, September.
    3. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    4. Giles, Judith A & Giles, David E A, 1993. "Pre-test Estimation and Testing in Econometrics: Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 7(2), pages 145-197, June.
    5. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    6. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    7. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    8. Isaiah Andrews & Maximilian Kasy, 2019. "Identification of and Correction for Publication Bias," American Economic Review, American Economic Association, vol. 109(8), pages 2766-2794, August.
    9. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
    10. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    11. Moulton, Brent R, 1990. "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 334-338, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Callaway, Brantly, 2021. "Bounds on distributional treatment effect parameters using panel data with an application on job displacement," Journal of Econometrics, Elsevier, vol. 222(2), pages 861-881.
    2. Eli Ben‐Michael & Avi Feller & Jesse Rothstein, 2022. "Synthetic controls with staggered adoption," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 351-381, April.
    3. Hakim Lyngstadås & Johannes Mauritzen, 2024. "Adults in the room? The auditor and dividends in small firms: evidence from a natural experiment," Empirical Economics, Springer, vol. 67(5), pages 2207-2240, November.
    4. Indra Kurniawan, Muhammad, 2021. "Has access to health insurance through the Indonesian social security system improved peoples understanding of health issues? Evidence from a national survey," Warwick-Monash Economics Student Papers 14, Warwick Monash Economics Student Papers.
    5. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    6. Mihai Alexandru Codreanu & Tom Waters, 2023. "Do work search requirements work? Evidence from a UK reform targeting single parents," IFS Working Papers W23/02, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.
    3. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    4. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    5. Vikström, Johan, 2009. "Cluster sample inference using sensitivity analysis: the case with few groups," Working Paper Series 2009:15, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    6. Ciani Emanuele & Fisher Paul, 2019. "Dif-in-Dif Estimators of Multiplicative Treatment Effects," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-10, January.
    7. Erlend E. Bø & Joel Slemrod & Thor O. Thoresen, 2015. "Taxes on the Internet: Deterrence Effects of Public Disclosure," American Economic Journal: Economic Policy, American Economic Association, vol. 7(1), pages 36-62, February.
    8. Nakashima, Kiyotaka, 2016. "An econometric evaluation of bank recapitalization programs with bank- and loan-level data," Journal of Banking & Finance, Elsevier, vol. 63(C), pages 1-24.
    9. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    10. Todd Mitton, 2022. "Methodological Variation in Empirical Corporate Finance," The Review of Financial Studies, Society for Financial Studies, vol. 35(2), pages 527-575.
    11. Lechner, Michael, 2011. "The Estimation of Causal Effects by Difference-in-Difference Methods," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(3), pages 165-224, November.
    12. Nguyen, Hai V., 2013. "Do smoke-free car laws work? Evidence from a quasi-experiment," Journal of Health Economics, Elsevier, vol. 32(1), pages 138-148.
    13. Irvine Ian J. & Nguyen Van Hai, 2014. "Retail Tobacco Display Bans," Forum for Health Economics & Policy, De Gruyter, vol. 17(2), pages 169-195, September.
    14. Herrero Prieto, Luis César, 2009. "La investigación en economía de la cultura en España: un estudio bibliométrico/Research in Cultural Economics in Spain: A Bibliometric Study," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 27, pages 35-62, Abril.
    15. Timothy G. Conley & Christopher R. Taber, 2011. "Inference with "Difference in Differences" with a Small Number of Policy Changes," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 113-125, February.
    16. Lorenzo Escot & José Fernández-Cornejo & Carlos Poza, 2014. "Fathers’ Use of Childbirth Leave in Spain. The Effects of the 13-Day Paternity Leave," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 33(3), pages 419-453, June.
    17. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    18. Matthew D. Webb, 2023. "Reworking wild bootstrap‐based inference for clustered errors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(3), pages 839-858, August.
    19. Mueller, Holger & Giroud, Xavier, 2007. "Does Corporate Governance Matter in Competitive Industries?," CEPR Discussion Papers 6446, C.E.P.R. Discussion Papers.
    20. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1804.01208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.